gluconeogenesis
简明释义
英[ˌɡluːkəʊˌniːəʊˈdʒenɪsɪs]美[ˌɡlʊkoˌniəˈdʒenəsɪs]
n. 糖原异生
英英释义
单词用法
糖异生途径 | |
糖异生调节 | |
刺激糖异生 | |
抑制糖异生 |
同义词
葡萄糖合成 | Gluconeogenesis is essential for maintaining blood glucose levels during fasting. | 糖异生在禁食期间对于维持血糖水平至关重要。 | |
糖异生途径 | 葡萄糖合成过程主要发生在肝脏中。 |
反义词
糖酵解 | Glycolysis is the process of breaking down glucose for energy. | 糖酵解是分解葡萄糖以获取能量的过程。 | |
脂肪生成 | Lipogenesis occurs when excess carbohydrates are converted into fat. | 当多余的碳水化合物转化为脂肪时,会发生脂肪生成。 |
例句
1.Gluconeogenesis, Biosynthesis of glycogen, starch, sucrose, and other carbohydrates, Photosynthetic carbohydrate synthesis, Regulation of carbohydrate metabolism in plants.
糖再生作用;糖原、淀粉、蔗糖及其它糖类的生物合成;光合作用中的糖合成;植物糖代谢的调控。
2.Gluconeogenesis, Biosynthesis of glycogen, starch, sucrose, and other carbohydrates, Photosynthetic carbohydrate synthesis, Regulation of carbohydrate metabolism in plants.
糖再生作用;糖原、淀粉、蔗糖及其它糖类的生物合成;光合作用中的糖合成;植物糖代谢的调控。
3.Objective This study was to investigate the effects of branched-chain amino acid (BCAA) supplementation on the metabolism of glucose and gluconeogenesis.
支链氨基酸作为必需氨基酸,不仅是合成机体蛋白质的原料,而且具有特殊的生理、生物学功能。
4.Pyruvate can be converted to carbohydrates via gluconeogenesis, to fatty acids or energy through acetyl-CoA, to the amino acid alanine and to ethanol.
丙酮酸可以通过把葡萄糖转化为碳水化合物,通过乙酰辅酶a转化为脂肪或能量,也可转化为丙氨酸和乙醇。
5.PEPCK is involved in gluconeogenesis, the process of generating glucose from non-carbohydrate substrates such as lactate and glycerol (2).
PEPCK在糖异生过程中发挥作用,糖异生指的是由非糖物质如甘油和乳酸合成葡萄糖的过程(2)。
6.The insulin sensitivity of animal models was quantified by insulin tolerance test, glucose tolerance test and gluconeogenesis test, etc.
用胰岛素耐量、糖耐量及糖异生等试验评估模型动物的胰岛素敏感性。
7.Objective: To investigate the effects of branched-chain amino acid (BCAA) supplementation on metabolism of glucose and gluconeogenesis.
目的:探讨补充支链氨基酸(BCAA)对不同负荷运动后及恢复期糖代谢和糖异生的影响。
8.The liver is the major site of gluconeogenesis from red blood cell–derived pyruvate and lactate and from amino acid precursors.
肝脏是从红细胞衍生的丙酮酸盐和乳酸盐以及氨基酸前体中进行糖异生的主要位点。
9.Gluconeogenesis in Very Low Birth Weight Infants Receiving Total Parenteral Nutrition.
糖原异生在极低出生体重儿接受全肠外营养。
10.Glucogenic amino acids can also be converted into glucose, through gluconeogenesis.
生糖氨基酸也可以通过糖异生作用转化为葡萄糖。
11.During fasting, the liver increases gluconeogenesis to maintain blood glucose levels.
在禁食期间,肝脏增加糖异生以维持血糖水平。
12.In patients with diabetes, impaired gluconeogenesis can lead to hypoglycemia.
在糖尿病患者中,受损的糖异生可能导致低血糖。
13.Exercise stimulates gluconeogenesis in the liver to provide energy for muscles.
运动刺激肝脏进行糖异生以为肌肉提供能量。
14.Certain hormones, like cortisol, promote gluconeogenesis during stress.
某些激素,如皮质醇,在压力下促进糖异生。
15.The process of gluconeogenesis is crucial for maintaining metabolic homeostasis.
过程的糖异生对于维持代谢稳态至关重要。
作文
Gluconeogenesis is a vital metabolic process that occurs in the liver and, to a lesser extent, in the kidneys. It is the synthesis of glucose from non-carbohydrate precursors, which is essential for maintaining blood sugar levels during periods of fasting or intense exercise. Understanding the mechanism of gluconeogenesis (糖异生) is crucial for comprehending how our body manages energy and responds to various physiological demands. During fasting, the body relies on stored glycogen as a primary energy source. However, glycogen stores are limited and can be depleted within 24 hours. To ensure a continuous supply of glucose, the body initiates gluconeogenesis (糖异生), converting substrates such as lactate, glycerol, and amino acids into glucose. This process is particularly important for the brain and red blood cells, which predominantly use glucose for energy. The process of gluconeogenesis (糖异生) involves several key enzymes and occurs mainly in the cytoplasm and mitochondria. It is essentially the reverse of glycolysis, the breakdown of glucose to produce energy. However, there are three irreversible steps in glycolysis that cannot simply be reversed; thus, gluconeogenesis (糖异生) employs specific enzymes to bypass these steps. These enzymes include pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase, and glucose-6-phosphatase. The regulation of gluconeogenesis (糖异生) is tightly controlled by hormonal signals. Insulin, which is released in response to high blood glucose levels, inhibits gluconeogenesis (糖异生) while promoting glycolysis and glycogen synthesis. Conversely, glucagon and cortisol stimulate gluconeogenesis (糖异生) during fasting states, ensuring that glucose production meets the body's needs. This balance between insulin and glucagon is crucial for maintaining homeostasis. In addition to its role in energy metabolism, gluconeogenesis (糖异生) also plays a significant part in metabolic disorders. For instance, in individuals with diabetes, the regulation of gluconeogenesis (糖异生) can be disrupted, leading to elevated blood glucose levels. Understanding this process provides insights into potential therapeutic targets for managing diabetes and other metabolic conditions. Moreover, gluconeogenesis (糖异生) has implications beyond energy metabolism; it is also involved in the synthesis of important biomolecules. For example, certain amino acids produced during gluconeogenesis (糖异生) can be used for protein synthesis, while intermediates from the pathway can contribute to the production of nucleotides and fatty acids. In conclusion, gluconeogenesis (糖异生) is a fundamental metabolic pathway that ensures the availability of glucose during periods of low carbohydrate intake. Its regulation is critical for maintaining energy balance and overall health. By studying gluconeogenesis (糖异生), we gain valuable insights into metabolic processes that govern our body's response to dietary changes and energy demands. As research continues to explore the intricacies of this pathway, it may pave the way for novel treatments for metabolic diseases and enhance our understanding of nutrition and physiology.
糖异生是一个重要的代谢过程,主要发生在肝脏和肾脏。它是指从非碳水化合物前体合成葡萄糖的过程,这对于在禁食或剧烈运动期间维持血糖水平至关重要。理解gluconeogenesis(糖异生)的机制对理解我们身体如何管理能量以及如何应对各种生理需求至关重要。 在禁食期间,身体主要依赖储存的糖原作为主要能量来源。然而,糖原储存是有限的,通常在24小时内会被消耗殆尽。为了确保持续供应葡萄糖,身体开始启动gluconeogenesis(糖异生),将乳酸、甘油和氨基酸等底物转化为葡萄糖。这个过程对于大脑和红血球尤为重要,因为它们主要依靠葡萄糖获取能量。 gluconeogenesis(糖异生)的过程涉及几个关键酶,并主要发生在细胞质和线粒体中。它本质上是糖酵解的逆过程,即将葡萄糖分解以产生能量。然而,糖酵解中有三个不可逆步骤,不能简单地逆转;因此,gluconeogenesis(糖异生)采用特定的酶来绕过这些步骤。这些酶包括丙酮酸羧化酶、磷酸烯醇丙酮酸羧激酶、果糖-1,6-二磷酸酶和葡萄糖-6-磷酸酶。 gluconeogenesis(糖异生)的调节受到激素信号的严格控制。胰岛素在高血糖水平下释放,抑制gluconeogenesis(糖异生),同时促进糖酵解和糖原合成。相反,胰高血糖素和皮质醇在禁食状态下刺激gluconeogenesis(糖异生),确保葡萄糖生产满足身体的需求。这种胰岛素与胰高血糖素之间的平衡对于维持内稳态至关重要。 除了在能量代谢中的作用外,gluconeogenesis(糖异生)还在代谢疾病中发挥重要作用。例如,在糖尿病患者中,gluconeogenesis(糖异生)的调节可能会受到干扰,导致血糖水平升高。理解这一过程为管理糖尿病和其他代谢疾病提供了潜在的治疗靶点。 此外,gluconeogenesis(糖异生)不仅涉及能量代谢,还参与重要生物分子的合成。例如,在gluconeogenesis(糖异生)过程中产生的某些氨基酸可以用于蛋白质合成,而该途径中的中间体可以促进核苷酸和脂肪酸的生产。 总之,gluconeogenesis(糖异生)是一个基本的代谢途径,它确保在低碳水化合物摄入期间葡萄糖的可用性。其调节对于维持能量平衡和整体健康至关重要。通过研究gluconeogenesis(糖异生),我们获得了关于支配我们身体对饮食变化和能量需求反应的代谢过程的重要见解。随着研究继续探索这一途径的复杂性,它可能为代谢疾病的新治疗方法铺平道路,并增强我们对营养和生理的理解。
文章标题:gluconeogenesis的意思是什么
文章链接:https://www.liuxue886.cn/danci/373566.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论