glycosidic
简明释义
英[/ˌɡlaɪˈkɒsɪdɪk/]美[/ˌɡlaɪˈkɒsɪdɪk/]
adj. 糖苷的;配糖的
英英释义
单词用法
同义词
糖苷键 | The glycosidic bond is crucial for the structure of carbohydrates. | 糖苷键对碳水化合物的结构至关重要。 | |
糖链连接 | 核苷酸中的糖链连接形成DNA的骨架。 |
反义词
非糖苷的 | 非糖苷键通常存在于蛋白质中。 | ||
水解的 | Hydrolytic enzymes break down glycosidic bonds in carbohydrates. | 水解酶分解碳水化合物中的糖苷键。 |
例句
1.About 77% of the glycosidic aroma precursors in fresh tea leaves remained in the final green tea product, which was perceived a potential source of additional green tea aroma.
在成品绿茶中仍保留约77%的糖苷类香气前体,这为绿茶香气品质的进一步改善留下了广阔的空间。
2.About 77% of the glycosidic aroma precursors in fresh tea leaves remained in the final green tea product, which was perceived a potential source of additional green tea aroma.
在成品绿茶中仍保留约77%的糖苷类香气前体,这为绿茶香气品质的进一步改善留下了广阔的空间。
3.DESCRIPTION STARCH, chemical formula (C6H10O5) n, is a polysaccharide carbohydrate consisting of a large number of glucose units joined together by glycosidic bonds.
产品说明淀粉化学式为(C6H10O5)n,是大量葡萄糖单元通过糖苷链组成的多糖碳水化合物。
4.Other factors include molecular weight, composing of monosaccharide residues, category of glycosidic bond and other substituted ions and so on.
多糖的分子量、 单糖种类、糖苷键的类型以及其他离子的取代,也在一定程度上影响多糖活性。
5.The physical and chemical factors of surrounding stress will probably induce biosynthesis and accumulation of glycosidic aroma precursors.
茶树也有可能在外在物理或化学因素的诱导下强化挥发物糖苷的生物合成和积累。
6.An oligosaccharide contains 2 to 20 sugar units joined by glycosidic bonds.
一个寡糖由2 ~20个糖单元由糖苷键连接起来。
7.An oligosaccharide contains2to20sugar units joined by glycosidic bonds.
一个寡糖由2 ~ 20个糖单元由糖苷键连接起来。
8.Structures of hexose and pentose sugars and glycosidic bonds.
六碳糖与五碳糖的结构,以及糖链。
9.It showed that tannins in E. citriodora leaf are of ellagitannins and the C-glycosidic ellagitannins are first isolated from Eucalyptus species.
结果表明,柠檬桉叶中的单宁是鞣花单宁,而C-糖苷鞣花单宁首先是从桉树中分离出来的。
10.The enzyme catalyzes the formation of a glycosidic 糖苷键 bond between glucose and fructose.
该酶催化葡萄糖和果糖之间形成一个glycosidic 糖苷键。
11.In cellulose, the glycosidic 糖苷键 connects the glucose units in a linear fashion.
在纤维素中,glycosidic 糖苷键以线性方式连接葡萄糖单元。
12.The breakdown of starch involves the hydrolysis of glycosidic 糖苷键 by enzymes.
淀粉的分解涉及酶对glycosidic 糖苷键的水解。
13.Certain antibiotics inhibit the formation of glycosidic 糖苷键 in bacterial cell walls.
某些抗生素抑制细菌细胞壁中glycosidic 糖苷键的形成。
14.The structure of DNA includes glycosidic 糖苷键 linking the sugar and base.
DNA的结构包括连接糖和碱基的glycosidic 糖苷键。
作文
In the realm of biochemistry, the term glycosidic refers to a specific type of bond that plays a crucial role in the structure and function of carbohydrates. A glycosidic bond is formed when a carbohydrate reacts with another molecule, typically another carbohydrate, resulting in the formation of a glycoside. This reaction involves the removal of a water molecule, a process known as dehydration synthesis. Understanding glycosidic bonds is essential for exploring how sugars interact within biological systems. Carbohydrates are fundamental macromolecules that serve as energy sources and structural components in living organisms. They consist of sugar molecules, which can exist as monosaccharides, disaccharides, oligosaccharides, or polysaccharides. The simplest form, monosaccharides like glucose and fructose, can combine to form more complex structures through glycosidic linkages. For instance, when two glucose molecules undergo a condensation reaction, they form maltose, a disaccharide, linked by an α-1,4 glycosidic bond. The significance of glycosidic bonds extends beyond mere structural formation; they also influence the properties and functionalities of carbohydrates. Different types of glycosidic bonds can lead to variations in the digestibility and sweetness of sugars. For example, the α-1,4 glycosidic bond found in starch allows it to be easily broken down by enzymes in the human digestive system, providing a quick source of energy. In contrast, the β-1,4 glycosidic bond in cellulose makes it indigestible for humans, highlighting the importance of bond type in biological processes. Moreover, glycosidic bonds play a vital role in the formation of nucleotides, the building blocks of nucleic acids such as DNA and RNA. In this context, a glycosidic bond forms between a sugar (ribose or deoxyribose) and a nitrogenous base (adenine, guanine, cytosine, or thymine). This connection is critical for the stability and integrity of genetic material, allowing for the storage and transmission of genetic information across generations. In addition to their biological importance, glycosidic bonds have implications in various industries, including food production and pharmaceuticals. For instance, understanding how different glycosidic bonds affect the sweetness and texture of food products can lead to the development of healthier alternatives. Furthermore, in drug design, manipulating glycosidic linkages can enhance the efficacy and bioavailability of therapeutic agents. In conclusion, the concept of glycosidic bonds is integral to our understanding of carbohydrates and their multifaceted roles in biology and industry. By studying these bonds, researchers can unlock new insights into metabolic processes, develop innovative food products, and create effective pharmaceuticals. As we continue to explore the complexities of biochemistry, the significance of glycosidic bonds will undoubtedly remain a focal point of scientific inquiry and application.
在生物化学领域,术语glycosidic指的是一种特定类型的键,这种键在碳水化合物的结构和功能中起着至关重要的作用。glycosidic键是在碳水化合物与另一种分子(通常是另一种碳水化合物)反应时形成的,导致糖苷的形成。这一反应涉及去除一个水分子,这个过程被称为脱水合成。理解glycosidic键对于探索糖在生物系统中的相互作用至关重要。 碳水化合物是基本的大分子,作为能量来源和生物体内的结构成分。它们由糖分子组成,这些糖分子可以以单糖、双糖、寡糖或多糖的形式存在。最简单的形式是单糖,如葡萄糖和果糖,可以通过glycosidic连接结合形成更复杂的结构。例如,当两个葡萄糖分子经历冷凝反应时,它们形成了麦芽糖,这是一种双糖,通过α-1,4glycosidic键连接。 glycosidic键的重要性不仅限于简单的结构形成;它们还影响碳水化合物的性质和功能。不同类型的glycosidic键可能导致糖的可消化性和甜度的变化。例如,淀粉中的α-1,4glycosidic键使其能够被人类消化系统中的酶轻易分解,从而提供快速的能量来源。相比之下,纤维素中的β-1,4glycosidic键使其对人类不可消化,这突显了键类型在生物过程中的重要性。 此外,glycosidic键在核苷酸的形成中也起着至关重要的作用,核苷酸是DNA和RNA等核酸的基本构件。在这种情况下,glycosidic键在糖(核糖或脱氧核糖)和氮碱基(腺嘌呤、鸟嘌呤、胞嘧啶或胸腺嘧啶)之间形成。这个连接对于遗传物质的稳定性和完整性至关重要,允许遗传信息在世代之间存储和传递。 除了它们的生物学重要性,glycosidic键在食品生产和制药等各个行业中也有影响。例如,了解不同glycosidic键如何影响食品产品的甜度和质地可以导致开发更健康的替代品。此外,在药物设计中,操控glycosidic连接可以增强治疗剂的有效性和生物利用度。 总之,glycosidic键的概念对于我们理解碳水化合物及其在生物和工业中的多方面角色至关重要。通过研究这些键,研究人员可以揭示代谢过程的新见解,开发创新的食品产品,并创造有效的药物。随着我们继续探索生物化学的复杂性,glycosidic键的重要性无疑将继续成为科学探究和应用的重点。
文章标题:glycosidic的意思是什么
文章链接:https://www.liuxue886.cn/danci/373833.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论