grana
简明释义
n. [细胞]基粒(granum 的复数形式)
n. (Grana)人名;(法、葡、意、塞)格拉娜(女名),格拉纳
英英释义
Grana refers to the small, granular structures found within chloroplasts that contain chlorophyll and are involved in the process of photosynthesis. | Grana是指在叶绿体内发现的小颗粒状结构,含有叶绿素,参与光合作用的过程。 |
单词用法
花粉颗粒 | |
淀粉颗粒 | |
类囊体颗粒 | |
颗粒和颗粒 |
同义词
颗粒 | 米饭由许多小颗粒组成。 | ||
小颗粒 | 这种药物以颗粒形式提供,便于服用。 |
反义词
颗粒 | The medication comes in granule form for easier consumption. | 这种药物以颗粒形式提供,便于服用。 | |
粉末 | 这种香料被磨成细粉。 |
例句
1.The chloroplasts of both the mesophyll and the bundle sheath cells contain many grana.
束鞘细胞的叶绿体和叶肉细胞的叶绿体都含有许多基粒。
2.Chloroplast structure in new leaflet emerging after PP333 treatment was changed. The numbers of grana and grana lamellae was increased.
对处理后出生的花生叶片叶绿体结构有影响,表现为叶绿体基粒数明显增多,每一基粒中基粒片层数较多;
3.Results the symptoms of DPN were greatly improved by the combined treatment with Tangmaikang Grana and mecobalamin.
结果糖脉康颗粒联合弥可保可明显改善DPN的症状。
4.Generosa Grana, M.D., F.A.C.P., breast cancer genetics specialist, Cooper Hospital/University Medical Center, Camden, NJ
Generosa Grana医学博士乳腺癌遗传学顾问,库伯大学医学中心,新泽西;
5.The early green fruit was characterized by chloroplasts with a typical grana intergranal thylakoid structure.
早期绿色果实的特点是叶绿体具典型的基粒-基粒间类囊体结构。
6.These stacks of thylakoids are called grana .
这些成堆的类囊体称为质体基粒。
7.The cheese was covered in a fine layer of grana.
这块奶酪上覆盖着一层细腻的grana。
8.I grated some grana to sprinkle over my pasta.
我刨了一些grana来撒在我的意大利面上。
9.She prefers grana cheese over mozzarella for her salad.
她更喜欢在沙拉中使用grana奶酪,而不是马苏里拉奶酪。
10.The chef used grana as a key ingredient in the risotto.
厨师在烩饭中使用了grana作为关键成分。
11.You can find grana at any good Italian deli.
你可以在任何好的意大利熟食店找到grana。
作文
In the fascinating world of botany, the term grana refers to the stacks of thylakoids found within the chloroplasts of plant cells. These structures play a crucial role in the process of photosynthesis, where light energy is converted into chemical energy. Understanding the function and significance of grana can deepen our appreciation for how plants sustain life on Earth. Photosynthesis is a remarkable process that allows plants to harness sunlight and convert it into glucose, which serves as food for them and, indirectly, for other organisms. The grana are essential components of this process, as they contain chlorophyll, the green pigment that captures light energy. When sunlight strikes the chlorophyll molecules in the grana, it excites electrons, initiating a series of reactions that ultimately lead to the production of ATP (adenosine triphosphate) and NADPH (nicotinamide adenine dinucleotide phosphate), both of which are vital for the synthesis of glucose. Each grana consists of multiple thylakoids stacked together, resembling a stack of pancakes. This unique arrangement increases the surface area available for light absorption, making the process of photosynthesis more efficient. The number of grana in a chloroplast can vary depending on the type of plant and its environmental conditions. For instance, plants that grow in low-light environments may have more grana to maximize their light absorption capabilities. Moreover, the formation of grana is not just a random occurrence; it is a highly regulated process. Various proteins and pigments work together to ensure that the thylakoids are properly arranged and functional. Disruptions in this delicate balance can lead to reduced photosynthetic efficiency, which can impact the overall health of the plant. The significance of grana extends beyond just the survival of plants. They are integral to the food chain, as plants form the base of most ecosystems. Animals, including humans, rely on plants for oxygen and sustenance. Thus, understanding how grana function within chloroplasts helps us appreciate the intricate connections between all living organisms and the environment. Furthermore, research into grana and photosynthesis has implications for addressing global challenges such as climate change and food security. Scientists are exploring ways to enhance photosynthetic efficiency in crops, which could lead to higher yields and better resilience against climate fluctuations. By studying the structure and function of grana, researchers hope to unlock new strategies for improving agricultural practices and ensuring a stable food supply for the growing population. In conclusion, the term grana encapsulates a vital aspect of plant biology that is essential for life on Earth. These structures are not only key players in the process of photosynthesis but also serve as a reminder of the interconnectedness of all living things. As we continue to explore the wonders of nature, let us remember the importance of grana and strive to protect the delicate ecosystems that sustain us all.
在植物学的迷人世界中,术语grana指的是植物细胞内叶绿体中发现的类囊体堆叠。这些结构在光合作用过程中发挥着至关重要的作用,在这个过程中,光能被转化为化学能。理解grana的功能和重要性可以加深我们对植物如何维持地球生命的欣赏。 光合作用是一个非凡的过程,使植物能够利用阳光并将其转化为葡萄糖,这为它们提供食物,并间接为其他生物提供食物。grana是这一过程的基本组成部分,因为它们含有叶绿素,这种绿色颜料能够捕捉光能。当阳光照射到grana中的叶绿素分子时,它会激发电子,启动一系列反应,最终导致ATP(腺苷三磷酸)和NADPH(烟酰胺腺嘌呤二核苷酸磷酸)的产生,这两者对于合成葡萄糖至关重要。 每个grana由多个类囊体堆叠在一起,类似于一叠煎饼。这种独特的排列增加了可用于光吸收的表面积,使光合作用的过程更加高效。一个叶绿体中的grana数量可能因植物的类型和环境条件而异。例如,生长在低光环境中的植物可能会拥有更多的grana以最大限度地提高其光吸收能力。 此外,grana的形成并不是随机发生的;这是一个高度调节的过程。各种蛋白质和色素共同工作,以确保类囊体的正确排列和功能。这种微妙平衡的破坏可能导致光合作用效率降低,从而影响植物的整体健康。 grana的重要性不仅限于植物的生存。它们是食物链的核心,植物构成了大多数生态系统的基础。动物,包括人类,依赖植物提供氧气和营养。因此,理解grana在叶绿体中的功能有助于我们欣赏所有生物与环境之间的复杂联系。 此外,对grana和光合作用的研究对应对全球挑战如气候变化和粮食安全也具有重要意义。科学家们正在探索提高作物光合作用效率的方法,这可能导致更高的产量和更好的应对气候波动的能力。通过研究grana的结构和功能,研究人员希望解锁改善农业实践的新策略,确保日益增长的人口的稳定食品供应。 总之,术语grana概括了植物生物学中一个至关重要的方面,这对地球上的生命至关重要。这些结构不仅是光合作用过程中的关键参与者,也是我们所有生物相互联系的提醒。在我们继续探索大自然的奇迹时,让我们记住grana的重要性,并努力保护维持我们所有生命的脆弱生态系统。
文章标题:grana的意思是什么
文章链接:https://www.liuxue886.cn/danci/375124.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论