granum
简明释义
n. [细胞]叶绿体基粒;颗粒
n. (Granum)人名;(瑞典)格拉努姆;(英)格拉纳姆
复 数 g r a n a
英英释义
A granum is a stack of thylakoids within the chloroplasts of plant cells, where the light-dependent reactions of photosynthesis occur. | granum是植物细胞中叶绿体内的一组类囊体堆叠,光合作用的光反应在此进行。 |
单词用法
淀粉颗粒 | |
类囊体颗粒 | |
颗粒结构 | |
颗粒功能 |
同义词
谷物 | 农民从田里收获了谷物。 | ||
颗粒 | 每一颗玉米粒都含有必需的营养成分。 | ||
粒子 | 科学家在显微镜下检查了这些粒子。 |
反义词
例句
1.BDNF immune reactivity in stratum granum and stratum moleculare of DG in NPY experimental group was higher than in control group and statistical analysis was significant.
实验组DG颗粒细胞层、分子层的BDNF免疫反应性高于对照组相应各层,各组比较有显著性差异。
2.BDNF immune reactivity in stratum granum and stratum moleculare of DG in NPY experimental group was higher than in control group and statistical analysis was significant.
实验组DG颗粒细胞层、分子层的BDNF免疫反应性高于对照组相应各层,各组比较有显著性差异。
3.Cell chloroplast density and higher granum lamellae decreased as well.
叶绿体高基粒片层逐渐减小。
4.The chloroplasts contain many granum, which are essential for photosynthesis.
叶绿体中含有许多颗粒,这些对光合作用至关重要。
5.Each granum is made up of stacked thylakoids that capture light energy.
每个颗粒由堆叠的类囊体组成,这些类囊体捕获光能。
6.The function of a granum is to facilitate the light-dependent reactions of photosynthesis.
一个颗粒的功能是促进光合的光依赖反应。
7.In plant cells, multiple granum work together to optimize energy capture.
在植物细胞中,多个颗粒协同工作以优化能量捕获。
8.Scientists study the structure of granum to understand how plants convert sunlight into energy.
科学家研究颗粒的结构,以了解植物如何将阳光转化为能量。
作文
Photosynthesis is one of the most crucial processes that sustain life on Earth. It is the method by which green plants, algae, and some bacteria convert light energy into chemical energy, specifically glucose. At the heart of this process lies the chloroplast, an organelle found in plant cells. Within the chloroplasts, there are structures called granum, which play a vital role in capturing light energy. A granum (plural: grana) consists of stacks of thylakoids, which are membrane-bound compartments filled with chlorophyll. These thylakoids absorb sunlight, initiating the photosynthetic process. The significance of granum cannot be overstated. During the light-dependent reactions of photosynthesis, the energy captured by chlorophyll in the granum is used to split water molecules, releasing oxygen as a byproduct. This process not only provides energy for the plant but also contributes to the oxygen supply in our atmosphere. The efficiency of photosynthesis is largely dependent on the structure and arrangement of the granum. More stacked thylakoids in a granum can lead to increased surface area for light absorption, enhancing the plant's ability to harness solar energy. In addition to their role in photosynthesis, granum are also involved in the synthesis of ATP (adenosine triphosphate), the energy currency of cells. The energy produced during the light-dependent reactions is stored in ATP and NADPH, which are then utilized in the Calvin cycle, the next stage of photosynthesis, to produce glucose. This transformation of light energy into chemical energy is essential for the growth and development of plants, making granum a fundamental component of the ecosystem. Moreover, studying granum and their functions has significant implications for agricultural practices. Understanding how plants optimize their photosynthetic efficiency can lead to the development of crops that require less water and fertilizer while producing higher yields. Scientists are exploring ways to enhance the structure of granum through genetic engineering, aiming to create plants that can better adapt to changing climates and environmental conditions. In conclusion, granum are not just mere structures within chloroplasts; they are integral to the survival of life on Earth. Their ability to capture light energy and convert it into a usable form is a remarkable feat of nature. As we continue to explore the intricacies of photosynthesis and the role of granum, we gain valuable insights that could help address global challenges such as food security and climate change. The study of granum exemplifies the interconnectedness of biological processes and the importance of understanding them for a sustainable future.
光合作用是维持地球生命的最重要过程之一。它是绿色植物、藻类和某些细菌将光能转化为化学能(特别是葡萄糖)的方法。在这个过程中,叶绿体是植物细胞内的细胞器。叶绿体内有一种叫做granum的结构,在捕捉光能方面发挥着至关重要的作用。一个granum(复数:grana)由一叠叠的类囊体组成,这些类囊体是充满叶绿素的膜结合囊室。这些类囊体吸收阳光,启动光合作用过程。 granum的重要性不容小觑。在光合作用的光反应阶段,类囊体中的叶绿素捕获的能量用于分解水分子,释放氧气作为副产品。这个过程不仅为植物提供能量,还为我们的气氛提供氧气供应。光合作用的效率在很大程度上取决于granum的结构和排列。更多堆叠的类囊体可以增加granum的表面积,从而增强植物捕获太阳能的能力。 除了在光合作用中的作用外,granum还参与ATP(腺苷三磷酸)的合成,ATP是细胞的能量货币。在光反应过程中产生的能量以ATP和NADPH的形式储存,然后在光合作用的下一个阶段——卡尔文循环中被利用,以生产葡萄糖。这种将光能转化为化学能的过程对植物的生长和发展至关重要,使得granum成为生态系统的基本组成部分。 此外,研究granum及其功能对农业实践具有重要意义。了解植物如何优化光合作用效率,可以开发出需要更少水和肥料,同时产量更高的作物。科学家们正在探索通过基因工程增强granum的结构,以期创造出能够更好适应气候变化和环境条件的植物。 总之,granum不仅仅是叶绿体内的简单结构;它们是地球生命生存的核心。它们捕获光能并将其转化为可用形式的能力是自然界的一项非凡壮举。随着我们继续探索光合作用的复杂性以及granum的作用,我们获得了宝贵的见解,这些见解可以帮助解决全球面临的挑战,如粮食安全和气候变化。对granum的研究体现了生物过程之间的相互联系,以及理解这些过程对可持续未来的重要性。
文章标题:granum的意思是什么
文章链接:https://www.liuxue886.cn/danci/375419.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论