gyromagnetic
简明释义
英[ˌdʒaɪrəʊmæɡˈnetɪk]美[ˌdʒaɪroʊmæɡˈnetɪk]
adj. 旋磁的,[物] 回转磁的
英英释义
Relating to the magnetic properties of a rotating body, especially in the context of gyroscopes and their behavior in magnetic fields. | 与旋转物体的磁性特性有关,尤其是在陀螺仪及其在磁场中行为的背景下。 |
单词用法
旋磁特性 | |
旋磁材料 | |
旋磁场 | |
旋磁矩 | |
旋磁稳定性 | |
旋磁系统 |
同义词
反义词
非旋磁性 | Materials that are non-gyromagnetic do not exhibit a significant response to magnetic fields. | 非旋磁性材料对磁场没有显著反应。 | |
反磁性 | 反磁性物质会被磁场排斥。 |
例句
1.The study of electromagnetic waves in nonlinear gyromagnetic materials is mainly focused on the properties and potential applications of nonlinear waves.
“旋磁材料中的非线性电磁波”主要研究电磁波与旋磁介质相互作用中出现的各种非线性传播特性以及应用途径。
2.The study of electromagnetic waves in nonlinear gyromagnetic materials is mainly focused on the properties and potential applications of nonlinear waves.
“旋磁材料中的非线性电磁波”主要研究电磁波与旋磁介质相互作用中出现的各种非线性传播特性以及应用途径。
3.A health-care miniature gyromagnetic field instrument for acupoint therapy is mainly composed of magnetic head, power supply and motor.
本发明是一种涉及医疗保健仪器的微型旋磁场仪,用于穴位治疗、保健。
4.The gyromagnetic 陀螺磁性 properties of certain materials are crucial for developing advanced navigation systems.
某些材料的gyromagnetic 陀螺磁性特性对于开发先进的导航系统至关重要。
5.Researchers are studying the gyromagnetic 陀螺磁性 effects in quantum mechanics to improve our understanding of particle behavior.
研究人员正在研究量子力学中的gyromagnetic 陀螺磁性效应,以提高我们对粒子行为的理解。
6.The gyromagnetic 陀螺磁性 ratio is an important parameter in magnetic resonance imaging (MRI).
在磁共振成像(MRI)中,gyromagnetic 陀螺磁性比率是一个重要参数。
7.Understanding the gyromagnetic 陀螺磁性 properties of electrons can lead to new technological advancements in electronics.
理解电子的gyromagnetic 陀螺磁性特性可以带来电子技术的新进展。
8.The gyromagnetic 陀螺磁性 behavior of atoms is essential for the development of atomic clocks.
原子的gyromagnetic 陀螺磁性行为对于原子钟的发展至关重要。
作文
The term gyromagnetic refers to the magnetic properties of a particle that are related to its angular momentum. This concept is particularly significant in the fields of physics and engineering, where understanding the behavior of particles in magnetic fields is crucial. The gyromagnetic ratio, for instance, is a key parameter that describes how a particle's magnetic moment relates to its angular momentum. This ratio is essential for applications in magnetic resonance imaging (MRI), where it helps in creating detailed images of the inside of the human body by utilizing the gyromagnetic properties of hydrogen nuclei in water molecules. In addition to medical imaging, the gyromagnetic effects are also observed in various technologies such as gyroscopes and magnetometers. Gyroscopes utilize the principles of gyromagnetic motion to maintain orientation and stability in navigation systems. For example, in aircraft and spacecraft, gyroscopes help pilots and automated systems understand their position and orientation relative to the Earth’s surface. The gyromagnetic behavior of these devices allows them to resist changes in their axis of rotation, providing critical data that enhances safety and performance. Furthermore, the study of gyromagnetic phenomena extends into the realm of quantum mechanics. Particles like electrons possess intrinsic spin, which contributes to their gyromagnetic characteristics. When placed in a magnetic field, these particles exhibit quantized energy levels, leading to various applications in quantum computing and information technology. Understanding how gyromagnetic properties influence particle behavior can pave the way for advancements in these cutting-edge fields. Moreover, the gyromagnetic ratio plays a vital role in the development of new materials and technologies. Researchers are constantly exploring materials with enhanced gyromagnetic properties to improve the efficiency of magnetic devices, such as hard drives and magnetic sensors. By manipulating the gyromagnetic characteristics of materials at the atomic level, scientists aim to create more powerful and efficient electronic components. In conclusion, the concept of gyromagnetic properties is integral to various scientific and technological advancements. From medical imaging to aerospace navigation and quantum computing, the implications of gyromagnetic behavior are vast and continually evolving. As research progresses, the understanding of gyromagnetic phenomena will undoubtedly lead to new innovations that enhance our capabilities in numerous fields. Therefore, grasping the significance of the term gyromagnetic is essential for anyone interested in the sciences and engineering disciplines, as it opens doors to a deeper appreciation of the intricate relationship between magnetism and motion.
术语gyromagnetic指的是与粒子的角动量相关的磁性特性。这个概念在物理学和工程学领域尤为重要,因为理解粒子在磁场中的行为至关重要。例如,gyromagnetic比率是一个关键参数,它描述了粒子的磁矩与其角动量之间的关系。这个比率对于医学成像中的应用至关重要,例如磁共振成像(MRI),它通过利用水分子中氢核的gyromagnetic特性来创建人体内部的详细图像。 除了医学成像,gyromagnetic效应还在各种技术中得到应用,如陀螺仪和磁力计。陀螺仪利用gyromagnetic运动的原理来保持导航系统中的方向和稳定性。例如,在飞机和航天器中,陀螺仪帮助飞行员和自动系统了解他们相对于地球表面的位置和方向。由于这些设备的gyromagnetic行为,它们能够抵抗旋转轴的变化,从而提供关键数据以提高安全性和性能。 此外,gyromagnetic现象的研究还延伸到量子力学领域。电子等粒子具有内在自旋,这对其gyromagnetic特性有贡献。当这些粒子置于磁场中时,它们表现出量化的能级,这导致在量子计算和信息技术中的各种应用。理解gyromagnetic特性如何影响粒子行为,可以为这些前沿领域的进展铺平道路。 此外,gyromagnetic比率在新材料和技术的发展中发挥着至关重要的作用。研究人员不断探索具有增强gyromagnetic特性的材料,以提高磁性设备的效率,例如硬盘和磁传感器。通过在原子水平上操控材料的gyromagnetic特性,科学家旨在创造更强大和高效的电子元件。 总之,gyromagnetic特性的概念对于各种科学和技术进步至关重要。从医学成像到航空航天导航再到量子计算,gyromagnetic行为的影响是广泛的,并且在不断发展。随着研究的进展,对gyromagnetic现象的理解无疑将导致新的创新,增强我们在多个领域的能力。因此,掌握术语gyromagnetic的重要性对于任何对科学和工程学科感兴趣的人来说都是必不可少的,因为它开启了对磁性与运动之间复杂关系的更深入欣赏。
文章标题:gyromagnetic的意思是什么
文章链接:https://www.liuxue886.cn/danci/377857.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论