hyperfine
简明释义
adj. 超精细的,超细的
英英释义
单词用法
超精细能级 | |
超精细磁场 | |
超精细跃迁 | |
超精细测量 |
同义词
超细 | 超细颗粒可以深入肺部。 | ||
微妙 | 颜色上的微妙差异很难察觉。 | ||
极其细致 | 艺术作品中极其细致的细节令人印象深刻。 |
反义词
粗糙的 | The fabric has a coarse texture, making it less comfortable to wear. | 这种面料的质地粗糙,穿着起来不太舒适。 | |
粗略的 | He gave a rough estimate of the costs involved in the project. | 他对这个项目涉及的成本做了一个粗略的估算。 |
例句
1.This article is aimed at introducing the generation principle of fine structure and hyperfine structure of atomic energy level, with its experimental result improved, designed and illustrated.
介绍了原子能级的精细结构与超精细结构的产生原理,对研究原子能级精细结构的两个实验作了改进、设计及说明。
2.This article is aimed at introducing the generation principle of fine structure and hyperfine structure of atomic energy level, with its experimental result improved, designed and illustrated.
介绍了原子能级的精细结构与超精细结构的产生原理,对研究原子能级精细结构的两个实验作了改进、设计及说明。
3.The isotope shifts, hyperfine structure, spontaneous emission branch ratio of the first excited level and Doppler width of the atom vapor beam were measured using laser induced fluorescence.
采用原子蒸气束激光诱导荧光法测量钆原子的第一激发态的同位素位移及超精细结构、原子跃迁自发辐射的分支比和原子蒸气束的多普勒宽度。
4.The regular variation of crystallization temperature, magnetic ordering temperature and average hyperfine magnetic field of the amorphous alloys with Nb content were observed.
观察到非晶合金的晶化温度,磁有序温度和平均磁超精细场有规律性的变化。
5.It follows that two experiments of hyperfine structure of atomic energy level which are called magnetic resonamce experiment and co-line expression beam interative experiment.
介绍了研究原子能级超精细结构的两个实验:磁共振实验、共线快离子束相互作用实验。
6.The relevant hyperfine parameters as a function of annealing time are shown and the result of experimental study is analyzed and discussed in detail.
给出了有关超精细参量随时间变化的规律,并对实验研究结果作出了分析与讨论。
7.The variation of the hyperfine interaction parameters and the variable mechanism of the sky-green glaze at liquid helium temperature is studied.
研究了在液氦温度下天青釉超精细相互作用参数的变化和参数变化的机制。
8.So it is not necessary to use a broad-band laser to guarantee excitation efficiency for an atom with hyperfine split levels.
因此,在这样激光功率条件下,为提高原子激发效率而增加激光谱线宽度的做法并不是必要的。
9.Hyperfine spectrum; Nonlinear optics; Degenerate four waves mixing; The equivalent grating; Isotope detecting.
超精细光谱;非线性光学;简并四波混频技术;等效光栅;同位素检测。
10.Nuclear effects produce hyperfine structure.
原子核的影响引起超精细结构。
11.The researchers studied the hyperfine 超精细 structure of the hydrogen atom to understand its properties better.
研究人员研究了氢原子的hyperfine 超精细 结构,以更好地理解其性质。
12.In quantum mechanics, hyperfine 超精细 interactions play a crucial role in the behavior of particles.
在量子力学中,hyperfine 超精细 相互作用在粒子的行为中起着关键作用。
13.The hyperfine 超精细 splitting of spectral lines provides important information about atomic energy levels.
光谱线的hyperfine 超精细 裂分提供了关于原子能级的重要信息。
14.Scientists are exploring hyperfine 超精细 measurements to improve atomic clocks.
科学家们正在探索hyperfine 超精细 测量以改进原子钟。
15.The hyperfine 超精细 structure constant is a fundamental parameter in quantum electrodynamics.
hyperfine 超精细 结构常数是量子电动力学中的一个基本参数。
作文
The study of atomic structures has revealed various fascinating phenomena, one of which is the concept of hyperfine interactions. These interactions occur due to the influence of nuclear spins on the electronic states of atoms. In essence, hyperfine refers to the extremely small energy differences that arise from the coupling between the magnetic moments of the nucleus and the electrons surrounding it. This phenomenon is crucial in fields such as quantum mechanics and magnetic resonance imaging (MRI). Understanding hyperfine interactions allows scientists to probe deeper into the properties of materials and the fundamental nature of matter itself. In practical applications, hyperfine splitting can be observed in spectroscopy, where the energy levels of atoms are split into very closely spaced levels. This splitting provides valuable information about the atomic structure and can help identify elements in a sample. For instance, when light interacts with an atom, the hyperfine structure can lead to distinct spectral lines, each corresponding to a specific transition between energy levels. This technique is widely used in astrophysics to analyze the composition of distant stars and galaxies, revealing the universe's chemical makeup. Moreover, hyperfine interactions play a significant role in the development of atomic clocks, which are known for their unparalleled accuracy. Atomic clocks utilize the resonance frequencies of atoms, which are affected by hyperfine splitting. By measuring these frequencies, scientists can keep time with extraordinary precision, making atomic clocks essential for global positioning systems (GPS) and various scientific research applications. Furthermore, the implications of hyperfine interactions extend beyond theoretical physics. In the realm of quantum computing, researchers are exploring how hyperfine states can be utilized to create qubits, the building blocks of quantum computers. The ability to manipulate these states could lead to breakthroughs in computational power, allowing for complex calculations that are currently impossible with classical computers. In conclusion, the concept of hyperfine interactions is pivotal in advancing our understanding of atomic physics and its applications. From spectroscopy to atomic clocks and quantum computing, the implications of hyperfine phenomena are far-reaching. As we continue to explore the intricacies of the atomic world, the significance of hyperfine interactions will undoubtedly remain at the forefront of scientific inquiry, paving the way for future innovations and discoveries in various fields of science and technology.
原子结构的研究揭示了各种迷人的现象,其中之一就是超精细相互作用的概念。这些相互作用是由于核自旋对原子周围电子态的影响而发生的。简而言之,超精细指的是由于核的磁矩与周围电子的耦合而产生的极小能量差。这种现象在量子力学和磁共振成像(MRI)等领域至关重要。理解超精细相互作用使科学家能够更深入地探讨材料的性质以及物质本质的基本特性。 在实际应用中,超精细分裂可在光谱学中观察到,其中原子的能级被分裂为非常紧密的能级。这种分裂提供了有关原子结构的宝贵信息,并可以帮助识别样品中的元素。例如,当光与原子相互作用时,超精细结构可能导致不同的光谱线,每条光谱线对应于能级之间特定的跃迁。这种技术广泛应用于天体物理学,以分析遥远恒星和星系的成分,揭示宇宙的化学组成。 此外,超精细相互作用在原子钟的发展中也起着重要作用,原子钟以其无与伦比的准确性而闻名。原子钟利用原子的共振频率,而这些频率受到超精细分裂的影响。通过测量这些频率,科学家可以以极高的精度保持时间,使原子钟在全球定位系统(GPS)和各种科学研究应用中变得至关重要。 此外,超精细相互作用的影响超出了理论物理学。在量子计算的领域,研究人员正在探索如何利用超精细态来创建量子位,量子计算机的基本构件。操纵这些状态的能力可能会导致计算能力的突破,从而进行当前经典计算机无法实现的复杂计算。 总之,超精细相互作用的概念在推进我们对原子物理及其应用的理解中至关重要。从光谱学到原子钟再到量子计算,超精细现象的影响深远。随着我们继续探索原子世界的复杂性,超精细相互作用的重要性无疑将继续处于科学探究的前沿,为未来在各个科学和技术领域的创新和发现铺平道路。
文章标题:hyperfine的意思是什么
文章链接:https://www.liuxue886.cn/danci/387483.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论