hyperpolarize
简明释义
英[/ˌhaɪpərˈpoʊlərˌaɪz/]美[/ˌhaɪpərˈpoʊlərˌaɪz/]
v. 超极化
第 三 人 称 单 数 h y p e r p o l a r i z e s
现 在 分 词 h y p e r p o l a r i z i n g
过 去 式 h y p e r p o l a r i z e d
过 去 分 词 h y p e r p o l a r i z e d
英英释义
单词用法
同义词
反义词
去极化 | The neuron will depolarize when a sufficient stimulus is applied. | 当施加足够的刺激时,神经元将去极化。 | |
兴奋 | In the cardiac cycle, the heart muscle cells depolarize to initiate a heartbeat. | 在心脏周期中,心肌细胞去极化以启动心跳。 |
例句
1.When a neuron is stimulated, it can become more negative inside, causing it to hyperpolarize 超极化 and reduce the likelihood of firing an action potential.
当神经元受到刺激时,它可能会变得更加负,导致其hyperpolarize 超极化,从而降低发放动作电位的可能性。
2.Certain drugs can hyperpolarize 超极化 the cell membrane, making it less excitable.
某些药物可以hyperpolarize 超极化细胞膜,使其兴奋性降低。
3.In cardiac physiology, hyperpolarization 超极化 helps regulate heart rhythm by influencing pacemaker cells.
在心脏生理学中,hyperpolarization 超极化通过影响起搏细胞来帮助调节心律。
4.The action of potassium ions moving out of the cell can cause it to hyperpolarize 超极化, leading to a refractory period.
钾离子从细胞内移出的作用可以导致细胞hyperpolarize 超极化,从而引发不应期。
5.During the inhibitory postsynaptic potential (IPSP), the neuron can hyperpolarize 超极化 due to the influx of chloride ions.
在抑制性突触后电位(IPSP)期间,由于氯离子的流入,神经元可以hyperpolarize 超极化。
作文
In the field of neuroscience, understanding how neurons communicate is crucial for unraveling the mysteries of the brain. One significant process in this communication is the ability of neurons to hyperpolarize, which refers to the increase in the negative charge within a neuron, making it less likely to fire an action potential. This mechanism plays a vital role in regulating neuronal excitability and maintaining the balance between excitation and inhibition in the brain. When a neuron hyperpolarizes, it becomes more negatively charged compared to its resting potential. This change can occur due to the influx of chloride ions or the efflux of potassium ions, both of which contribute to making the interior of the cell more negative. To illustrate the importance of hyperpolarization, consider a scenario where a neuron receives multiple excitatory signals from other neurons. If these excitatory inputs are strong enough, they can depolarize the neuron, bringing it closer to the threshold needed to fire an action potential. However, if there is also a simultaneous input that causes the neuron to hyperpolarize, it can counteract the excitatory signals, thus preventing the neuron from firing. This balancing act is essential for proper brain function, as it ensures that not every signal leads to an action potential, which could result in excessive neuronal activity and potentially lead to conditions such as seizures. Furthermore, hyperpolarization is not only a passive response but can also be actively regulated by various neurotransmitters. For example, the neurotransmitter GABA (gamma-aminobutyric acid) is known for its inhibitory effects on neurons. When GABA binds to its receptors, it often leads to an influx of chloride ions, causing the neuron to hyperpolarize. This action serves to dampen neuronal activity and is critical in preventing overexcitation that can disrupt normal brain function. The concept of hyperpolarization extends beyond individual neurons; it influences entire neural circuits and systems. For instance, in the context of sensory processing, when certain pathways are hyperpolarized, it can enhance the contrast in sensory information, allowing the brain to better discriminate between different stimuli. This highlights the role of hyperpolarization in fine-tuning our perception of the world around us. Moreover, understanding hyperpolarization has implications for developing treatments for various neurological disorders. Disorders characterized by abnormal neuronal excitability, such as epilepsy or anxiety, may benefit from therapies aimed at enhancing hyperpolarization in specific neuronal circuits. By targeting the mechanisms that promote hyperpolarization, researchers hope to create more effective treatments that restore balance in the brain's electrical activity. In conclusion, the process of hyperpolarization is a fundamental aspect of neuronal function that significantly influences how neurons communicate and process information. By increasing the negativity within a neuron, hyperpolarization serves as a crucial regulatory mechanism, ensuring that neuronal activity remains balanced and appropriate. As research continues to explore the intricacies of this process, we gain a deeper understanding of the brain's complexities and the potential for innovative therapeutic approaches to address neurological challenges.
在神经科学领域,理解神经元如何沟通对于揭开大脑的奥秘至关重要。在这种沟通中,一个重要的过程是神经元能够超极化,这指的是神经元内负电荷的增加,使其不太可能产生动作电位。这个机制在调节神经元的兴奋性和维持大脑中的兴奋与抑制之间的平衡方面发挥着重要作用。当一个神经元超极化时,它的电荷变得比静息电位更负。这种变化可以通过氯离子的流入或钾离子的流出而发生,这两者都促使细胞内部变得更加负。 为了说明超极化的重要性,可以考虑一个场景,其中一个神经元接收来自其他神经元的多个兴奋信号。如果这些兴奋输入足够强大,它们可以使神经元去极化,将其带到发放动作电位所需的阈值。然而,如果同时有一个输入导致神经元超极化,它可以抵消兴奋信号,从而防止神经元发放。这种平衡行为对大脑功能的正常运作至关重要,因为它确保并非每个信号都会导致动作电位,这可能导致神经活动过度,从而可能引发癫痫等疾病。 此外,超极化不仅是一种被动反应,还可以通过各种神经递质主动调节。例如,神经递质GABA(γ-氨基丁酸)以其对神经元的抑制效应而闻名。当GABA与其受体结合时,通常会导致氯离子的流入,造成神经元超极化。这一作用有助于减弱神经元活动,对于防止过度兴奋至关重要,这可能会扰乱正常的大脑功能。 超极化的概念不仅限于单个神经元;它影响整个神经回路和系统。例如,在感觉处理的背景下,当某些通路被超极化时,可以增强感觉信息的对比,使大脑更好地区分不同的刺激。这突显了超极化在微调我们对周围世界感知中的作用。 此外,理解超极化对开发各种神经系统疾病的治疗具有重要意义。以异常神经元兴奋性为特征的疾病,如癫痫或焦虑,可能会受益于旨在增强特定神经元回路中超极化的疗法。通过针对促进超极化的机制,研究人员希望创造更有效的治疗方法,以恢复大脑电活动的平衡。 总之,超极化过程是神经元功能的基本方面,显著影响神经元如何沟通和处理信息。通过增加神经元内的负电荷,超极化作为一种关键的调节机制,确保神经元活动保持平衡和适当。随着研究继续探索这一过程的复杂性,我们对大脑的复杂性有了更深入的理解,并为应对神经系统挑战提供了创新的治疗方法的潜力。
文章标题:hyperpolarize的意思是什么
文章链接:https://www.liuxue886.cn/danci/387605.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论