hypocycloidal
简明释义
英[ˌhaɪpəʊˈsaɪklɔɪdəl]美[ˌhaɪpəˈsaɪkloɪdəl]
内圆滚线
英英释义
Relating to or denoting a curve traced by a point on the circumference of a smaller circle that rolls within the circumference of a larger fixed circle. | 与一个较小圆的周长在一个较大的固定圆的周长内滚动时所描绘的曲线有关或表示。 |
单词用法
内切圆驱动 | |
内切圆机制 | |
内切圆振荡 | |
内切圆轮廓 |
同义词
内接圆的轨迹 | The path traced by a point on the circumference of a smaller circle rolling inside a larger circle is called a hypocycloid. | 一个较小圆的周长上的点在一个较大圆内部滚动时所描绘的路径称为内接圆的轨迹。 |
反义词
例句
1.On the basis of these, the general structure of the NC machine tool for synchromesh sleeves is designed with principle of hypocycloidal machining.
在此基础上设计了汽车同步器齿套摆线加工数控机床的总体结构;
2.On the basis of these, the general structure of the NC machine tool for synchromesh sleeves is designed with principle of hypocycloidal machining.
在此基础上设计了汽车同步器齿套摆线加工数控机床的总体结构;
3.The principle of hypocycloidal synchromesh sleeve pocket machining was introduced.
介绍了用摆线加工滑块槽的原理;
4.The gears in this mechanism are designed to create a hypocycloidal 内摆轮 motion, ensuring smooth operation.
这个机制中的齿轮被设计成产生hypocycloidal 内摆轮运动,以确保平稳运行。
5.In engineering, the hypocycloidal 内摆轮 path is often used to describe the motion of certain types of linkages.
在工程学中,hypocycloidal 内摆轮路径常用于描述某些类型连杆的运动。
6.The hypocycloidal 内摆轮 design allows for efficient energy transfer in mechanical systems.
这种hypocycloidal 内摆轮设计可以在机械系统中实现高效的能量传递。
7.When studying planetary gear systems, understanding the hypocycloidal 内摆轮 motion is crucial.
在研究行星齿轮系统时,理解hypocycloidal 内摆轮运动是至关重要的。
8.The hypocycloidal 内摆轮 motion can be observed in the design of certain clock mechanisms.
在某些钟表机制的设计中,可以观察到hypocycloidal 内摆轮运动。
作文
The concept of motion and geometry has fascinated mathematicians and engineers for centuries. One intriguing aspect of this field is the study of curves generated by rolling circles, particularly the hypocycloidal curve. A hypocycloidal curve is formed when a smaller circle rolls inside a larger fixed circle without slipping. This fascinating geometric phenomenon can be observed in various applications, ranging from mechanical engineering to art. To truly appreciate the significance of the hypocycloidal curve, one must first understand its mathematical foundation. The parameters that define a hypocycloidal curve include the radius of the larger circle and the radius of the smaller circle. As the smaller circle rolls inside the larger one, the point of contact traces out a complex path that can have multiple loops or cusps, depending on the ratio of the two radii. This unique property makes hypocycloidal curves not only mathematically interesting but also visually captivating. In engineering, hypocycloidal gears are an excellent example of how this curve can be utilized. These gears offer significant advantages over traditional gear systems, such as reduced friction and smoother motion. By employing hypocycloidal profiles, engineers can design systems that operate more efficiently and with less wear over time. This application highlights the practical importance of understanding and applying the principles behind hypocycloidal curves. Moreover, the beauty of hypocycloidal curves extends beyond engineering into the realm of art and design. Artists and designers often draw inspiration from these intricate patterns, using them to create visually appealing works. The symmetry and complexity of hypocycloidal shapes can evoke a sense of harmony and balance, making them popular in various artistic expressions, from architecture to graphic design. In conclusion, the hypocycloidal curve represents a remarkable intersection of mathematics, engineering, and art. Its unique properties and applications demonstrate the importance of understanding geometric concepts in both theoretical and practical contexts. As we continue to explore the wonders of mathematics and its applications, the hypocycloidal curve will undoubtedly remain a subject of interest for future generations of thinkers and creators.
运动和几何的概念吸引了数学家和工程师几个世纪以来的关注。这个领域一个令人着迷的方面是研究通过滚动圆圈生成的曲线,特别是hypocycloidal曲线。当一个较小的圆在一个较大的固定圆内滚动而不打滑时,就形成了hypocycloidal曲线。这种迷人的几何现象可以在各种应用中观察到,从机械工程到艺术。 要真正欣赏hypocycloidal曲线的重要性,首先必须理解其数学基础。定义hypocycloidal曲线的参数包括大圆的半径和小圆的半径。当小圆在大圆内滚动时,接触点描绘出一条复杂的路径,取决于两个半径的比例,可以具有多个环或尖点。这一独特的属性使得hypocycloidal曲线不仅在数学上引人入胜,而且在视觉上也令人着迷。 在工程领域,hypocycloidal齿轮是如何利用这一曲线的一个优秀例子。这些齿轮相比传统齿轮系统提供了显著的优势,例如减少摩擦和更平滑的运动。通过采用hypocycloidal轮廓,工程师可以设计出更高效且磨损更少的系统。这一应用凸显了理解和应用hypocycloidal曲线背后原理的实际重要性。 此外,hypocycloidal曲线的美丽超越了工程,进入了艺术和设计的领域。艺术家和设计师经常从这些复杂的图案中汲取灵感,用它们来创造视觉上吸引人的作品。hypocycloidal形状的对称性和复杂性可以唤起和谐和平衡的感觉,使其在建筑到平面设计等各种艺术表现中受到欢迎。 总之,hypocycloidal曲线代表了数学、工程和艺术的显著交集。其独特的属性和应用展示了在理论和实践背景下理解几何概念的重要性。随着我们继续探索数学的奇迹及其应用,hypocycloidal曲线无疑将继续成为未来思想者和创造者感兴趣的主题。
文章标题:hypocycloidal的意思是什么
文章链接:https://www.liuxue886.cn/danci/387841.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论