ionise
简明释义
v. (使)离子化(等于 ionize)
英英释义
To convert an atom or molecule into an ion by adding or removing charged particles, typically electrons. | 通过添加或去除带电粒子(通常是电子)将原子或分子转化为离子。 |
单词用法
在真空中电离 | |
在高能下电离 | |
电离分子 | |
电离空气 | |
电离气体 | |
电离辐射 |
同义词
反义词
中和 | 酸被碱中和了。 | ||
稳定 | 采取措施以稳定化学反应。 |
例句
1.To test this idea, she and her colleagues designed a device that USES short pulses of electricity to ionise the surrounding air, creating a purple plume of plasma rich in oxygen ions.
为了验证这个想法,她和同事们设计了一种设备,利用短脉冲电使周围空气离子化,产生紫色富含氧离子的等离子火焰。
2.To test this idea, she and her colleagues designed a device that USES short pulses of electricity to ionise the surrounding air, creating a purple plume of plasma rich in oxygen ions.
为了验证这个想法,她和同事们设计了一种设备,利用短脉冲电使周围空气离子化,产生紫色富含氧离子的等离子火焰。
3.First, he has to ionise more CO 2.
首先,他必须离子化更多的CO 2。
4.When exposed to high energy radiation, atoms can easily ionise 电离 and form charged particles.
当暴露于高能辐射时,原子可以很容易地电离并形成带电粒子。
5.The process of ionising 电离 air molecules is essential for the functioning of certain types of detectors.
空气分子电离的过程对于某些类型的探测器的功能至关重要。
6.In a vacuum, electrons can ionise 电离 gas atoms, creating a plasma state.
在真空中,电子可以电离气体原子,形成等离子态。
7.Chemists often use lasers to ionise 电离 samples for mass spectrometry analysis.
化学家们常常使用激光来电离样品以进行质谱分析。
8.To measure the concentration of ions in a solution, we can ionise 电离 the sample using an electric field.
为了测量溶液中离子的浓度,我们可以使用电场对样品进行电离。
作文
In the realm of chemistry and physics, the process of ionise (离子化) plays a crucial role in understanding various phenomena. To ionise means to convert an atom or molecule into an ion by adding or removing charged particles, typically electrons. This process is fundamental in a variety of scientific fields, including atmospheric science, biochemistry, and even in the development of new technologies. One of the most common examples of ionise (离子化) occurs in the atmosphere. When cosmic rays or ultraviolet light from the sun strike atoms in the upper atmosphere, they can cause these atoms to ionise (离子化). This results in the formation of ions, which can then influence weather patterns and contribute to phenomena such as auroras. The ability of certain gases to ionise (离子化) under specific conditions is also essential for understanding how lightning forms during thunderstorms. In the field of biochemistry, the ionise (离子化) process is vital for many biological functions. For instance, when acids and bases dissolve in water, they ionise (离子化) to produce hydrogen ions (H+) and hydroxide ions (OH-), respectively. This ionization is crucial for maintaining the pH levels in our bodies, which is necessary for optimal enzyme activity and metabolic processes. Without the ability to ionise (离子化), many biochemical reactions would not occur efficiently, leading to severe health issues. Moreover, in the realm of technology, the ionise (离子化) process is exploited in various applications. For instance, mass spectrometry, a technique used to analyze the composition of substances, relies on the ability to ionise (离子化) samples. By ionise (离子化) the molecules in a sample, scientists can determine the mass-to-charge ratio of the ions produced, allowing them to identify and quantify different components within the sample. This has significant implications in fields such as pharmaceuticals, environmental science, and forensic analysis. Furthermore, the concept of ionise (离子化) extends beyond just atoms and molecules. In the context of plasma physics, for example, gases can be heated to the point where they become ionized, forming plasma. This state of matter is found in stars, including our sun, where extreme temperatures cause hydrogen atoms to ionise (离子化) and fuse together, releasing vast amounts of energy. Understanding how to control and utilize this ionise (离子化) process is key to advancements in fusion energy research, which aims to provide a sustainable and virtually limitless source of power. In conclusion, the process of ionise (离子化) is fundamental to multiple scientific disciplines and has far-reaching implications. From influencing atmospheric phenomena and enabling vital biochemical reactions to advancing technological innovations, ionise (离子化) is a concept that underpins much of our understanding of the natural world. As we continue to explore and harness the power of ionise (离子化), we unlock new possibilities for scientific discovery and technological advancement, highlighting the importance of this process in our lives.
在化学和物理学的领域中,ionise(离子化)过程在理解各种现象方面起着至关重要的作用。ionise(离子化)的意思是通过添加或去除带电粒子,通常是电子,将原子或分子转化为离子。这个过程对于大气科学、生物化学甚至新技术的发展等多个科学领域都是基础。 ionise(离子化)的一个常见例子发生在大气中。当宇宙射线或来自太阳的紫外线照射到高层大气中的原子时,它们可以使这些原子发生ionise(离子化)。这导致离子的形成,从而影响天气模式,并促成诸如极光等现象。某些气体在特定条件下能够ionise(离子化)也是理解雷电在雷暴中如何形成的关键。 在生物化学领域,ionise(离子化)过程对许多生物功能至关重要。例如,当酸和碱溶解在水中时,它们会ionise(离子化),产生氢离子(H+)和氢氧根离子(OH-)。这种离子化对维持我们身体中的pH水平至关重要,这对于优化酶的活性和代谢过程是必要的。如果没有ionise(离子化)的能力,许多生化反应将无法高效进行,从而导致严重的健康问题。 此外,在技术领域,ionise(离子化)过程在各种应用中被利用。例如,质谱法是一种用于分析物质成分的技术,它依赖于样品的ionise(离子化)能力。通过ionise(离子化)样品中的分子,科学家可以确定产生的离子的质量与电荷比,从而识别和量化样品中的不同成分。这在制药、环境科学和法医分析等领域具有重大意义。 此外,ionise(离子化)概念不仅限于原子和分子。在等离子体物理学的背景下,例如,气体可以被加热到发生离子化的程度,形成等离子体。这种物质状态存在于恒星中,包括我们的太阳,其中极端的温度使氢原子ionise(离子化)并融合在一起,释放出巨大的能量。理解如何控制和利用这种ionise(离子化)过程是推动聚变能研究进步的关键,这旨在提供一种可持续和几乎无限的能源来源。 总之,ionise(离子化)过程是多个科学学科的基础,并且具有深远的影响。从影响大气现象和促进重要的生化反应,到推动技术创新,ionise(离子化)是支撑我们对自然世界理解的一个概念。随着我们继续探索和利用ionise(离子化)的力量,我们开启了科学发现和技术进步的新可能性,突显了这一过程在我们生活中的重要性。
文章标题:ionise的意思是什么
文章链接:https://www.liuxue886.cn/danci/398104.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论