isogonal
简明释义
等方位线
[数] 等角的
英英释义
与角度相等的角相关或表示。 | |
In geometry, referring to figures or shapes that have equal angles. | 在几何学中,指具有相等角度的图形或形状。 |
单词用法
等角共轭点 | |
等角三角形 | |
等角映射 | |
等角对称 |
同义词
等腰的 | 一个等腰三角形有两条相等的边。 | ||
等边的 | 一个等边三角形的三条边都相等。 |
反义词
非等角的 | The non-isogonal shapes in the design create a sense of chaos. | 设计中的非等角形状营造出一种混乱感。 | |
不对称的 | Asymmetrical patterns are often used in modern art to evoke emotion. | 不对称的图案常用于现代艺术中以唤起情感。 |
例句
1.All geometric parameters of the leaf curved surface may be calculated more exactly comparing with traditional "method of isogonal transformation".
与传统的“等角变换”法比较,可精确计算叶片的全部几何参数。
2.All geometric parameters of the leaf curved surface may be calculated more exactly comparing with traditional "method of isogonal transformation".
与传统的“等角变换”法比较,可精确计算叶片的全部几何参数。
3.This kind of antenna is called non frequency transforming antenna, a typical instance is plane isogonal corkscrew antenna.
我们将这一类天线称为非频变天线。平面等角螺旋天线是这一类天线的典型例子。
4.In geometry, an isogonal 等角的 polygon has vertices that are symmetric with respect to the center.
在几何中,一个isogonal 等角的 多边形的顶点相对于中心是对称的。
5.The term isogonal 等角的 is often used in the study of regular polyhedra.
术语isogonal 等角的 常用于正多面体的研究中。
6.An isogonal 等角的 triangle has angles that are equal in measure.
一个isogonal 等角的 三角形的角度是相等的。
7.In chemistry, certain molecular structures can be described as isogonal 等角的 if their bond angles are the same.
在化学中,如果某些分子结构的键角相同,可以描述为isogonal 等角的。
8.The concept of isogonal 等角的 symmetry is important in crystallography.
在晶体学中,isogonal 等角的 对称性概念非常重要。
作文
In the realm of geometry, the term isogonal refers to a property where angles are equal. This concept is particularly significant in the study of polygons and polyhedra, where symmetry plays a crucial role. When we analyze shapes such as regular polygons, we find that they are isogonal, meaning all their internal angles are congruent. This property not only enhances the aesthetic appeal of these shapes but also contributes to their structural integrity. For instance, consider a regular hexagon. Each of its internal angles measures 120 degrees, illustrating the isogonal nature of this polygon. The uniformity of angles allows for various applications in architecture and design, where stability and balance are essential. Architects often utilize isogonal shapes in their designs to create visually pleasing structures that can withstand environmental stresses. Beyond polygons, the concept of isogonal extends to three-dimensional shapes, such as polyhedra. A regular tetrahedron, for example, has four triangular faces, each with equal angles. This isogonal characteristic ensures that the shape is not only symmetrical but also equally balanced from any viewpoint. Such properties are vital in fields like crystallography, where the arrangement of atoms in a crystal lattice can be understood through the lens of isogonal symmetry. Moreover, the significance of isogonal extends into the world of art and nature. Artists often draw inspiration from isogonal patterns found in nature, such as the symmetry of flowers or the geometric shapes of snowflakes. These natural occurrences demonstrate how isogonal principles govern the beauty and complexity of the world around us. By incorporating isogonal designs into their work, artists can create pieces that resonate with viewers on a deeper level, invoking a sense of harmony and balance. In mathematics, the study of isogonal figures leads to a deeper understanding of symmetry and transformation. Geometric transformations such as rotation and reflection often preserve isogonal properties, allowing mathematicians to explore the relationships between different shapes. This exploration can lead to new discoveries in both theoretical and applied mathematics, bridging the gap between abstract concepts and real-world applications. In conclusion, the term isogonal encapsulates the essence of equality and symmetry in geometry. Its implications reach far beyond mere definitions, influencing architecture, art, and scientific research. Understanding isogonal properties enables us to appreciate the underlying structures that govern our environment, fostering a greater appreciation for the mathematical principles that shape our world. As we continue to explore the intricacies of geometry, the concept of isogonal will undoubtedly remain a cornerstone of our understanding, guiding us toward new insights and innovations.
在几何学领域,术语isogonal指的是角度相等的属性。这个概念在多边形和多面体的研究中尤为重要,因为对称性在其中扮演着至关重要的角色。当我们分析诸如正多边形的形状时,我们发现它们是isogonal的,这意味着它们的所有内角都是全等的。这一属性不仅增强了这些形状的美学吸引力,还促进了它们的结构完整性。 例如,考虑一个正六边形。它的每个内角均为120度,这说明了该多边形的isogonal特性。角度的统一性使得建筑和设计中的各种应用成为可能,在这些领域中,稳定性和平衡性至关重要。建筑师常常在设计中利用isogonal形状,以创建视觉上令人愉悦且能够承受环境压力的结构。 除了多边形,isogonal的概念还扩展到三维形状,例如多面体。以正四面体为例,它有四个三角形面,每个面都有相等的角度。这种isogonal特性确保了该形状不仅是对称的,而且从任何角度看都是均衡的。这些特性在晶体学等领域至关重要,通过isogonal对称性可以理解晶体晶格中原子的排列。 此外,isogonal的重要性还延伸到了艺术和自然界。艺术家们常常从自然界中发现的isogonal图案中汲取灵感,例如花朵的对称性或雪花的几何形状。这些自然现象展示了isogonal原则如何支配我们周围世界的美丽与复杂。通过将isogonal设计融入他们的作品中,艺术家能够创造出与观众在更深层次上产生共鸣的作品,唤起一种和谐与平衡的感觉。 在数学中,对isogonal图形的研究能够加深我们对对称性和变换的理解。几何变换,如旋转和反射,通常保持isogonal属性,使数学家能够探索不同形状之间的关系。这种探索可以导致理论和应用数学的新发现,架起抽象概念与现实世界应用之间的桥梁。 总之,术语isogonal概括了几何学中平等与对称的本质。它的意义远不止于简单的定义,而是影响着建筑、艺术和科学研究。理解isogonal属性使我们能够欣赏支配我们环境的基本结构,培养对塑造我们世界的数学原理的更大欣赏。随着我们继续探索几何的复杂性,isogonal的概念无疑将继续成为我们理解的基石,引导我们走向新的见解和创新。
文章标题:isogonal的意思是什么
文章链接:https://www.liuxue886.cn/danci/398845.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论