isopycnal
简明释义
英[ˌaɪsəʊˈpɪkn(ə)l]美[aɪsəˈpɪknl]
adj. 等密度的;等容度
n. 等密度线
英英释义
Referring to lines or surfaces that connect points of equal density in a fluid, particularly in the context of oceanography and meteorology. | 指连接流体中等密度相等点的线或面,特别是在海洋学和气象学的背景下。 |
单词用法
等密度过程 | |
等密度分析 | |
等密度近似 | |
等密度流动 | |
等密度动力学 | |
等密度温度 |
同义词
等盐线 | Isopycnal surfaces are often used in oceanography to study the distribution of water masses. | 等密度面通常用于海洋学中研究水团的分布。 |
反义词
等温的 | 等温过程在恒定温度下进行。 | ||
非等密度的 | 非等密度混合可能导致流体中的分层现象。 |
例句
1.The effects of open boundary and different isopycnal diffusion coefficients on the circulation and thermohaline structure in the North Pacific are examined.
考察了开边界和不同等密面扩散系数对北太平洋环流和温盐结构的影响。
2.The effects of open boundary and different isopycnal diffusion coefficients on the circulation and thermohaline structure in the North Pacific are examined.
考察了开边界和不同等密面扩散系数对北太平洋环流和温盐结构的影响。
3.The oceanographer studied the isopycnal 等密度面 layers to understand the distribution of marine species.
海洋学家研究了等密度面层,以了解海洋物种的分布。
4.In thermohaline circulation, water masses move along isopycnal 等密度面 surfaces.
在热盐环流中,水团沿着等密度面表面移动。
5.The research focused on the isopycnal 等密度面 mixing processes in the deep ocean.
研究集中在深海中的等密度面混合过程上。
6.Changes in temperature can affect the stability of isopycnal 等密度面 structures.
温度变化会影响等密度面结构的稳定性。
7.The model simulated the movement of nutrients along isopycnal 等密度面 in the ocean.
该模型模拟了营养物质在海洋中沿着等密度面的移动。
作文
In the study of oceanography, one of the critical concepts that scientists must understand is the idea of density and its implications for ocean currents and stratification. A term that frequently arises in this context is isopycnal, which refers to lines or surfaces of constant density in a fluid. Understanding isopycnal layers is essential for comprehending how ocean water moves and interacts with different environmental factors. Ocean waters are not uniform; they have varying densities due to differences in temperature, salinity, and pressure. The concept of isopycnal surfaces helps us visualize these variations. For instance, when we consider a body of water, such as an ocean or a lake, we can imagine it divided into layers based on density. The isopycnal layers represent regions where the density remains constant, even though other properties like temperature and salinity may change. The significance of isopycnal layers extends beyond mere academic interest. They play a crucial role in the movement of nutrients and heat within the ocean. For example, when warm water from the equator travels toward the poles, it does so along isopycnal surfaces, maintaining its density and facilitating the transport of heat across vast distances. This process is vital for regulating global climate patterns and supporting marine ecosystems. Moreover, understanding isopycnal dynamics is essential for predicting and modeling ocean circulation. Scientists use various tools and technologies, such as satellite observations and buoys, to measure temperature and salinity at different depths. By mapping these measurements, researchers can identify isopycnal layers and analyze how changes in one part of the ocean can affect other regions. This knowledge is particularly important in the context of climate change, as alterations in ocean density can lead to shifts in current patterns and, subsequently, weather systems. In addition to their role in physical oceanography, isopycnal surfaces also have implications for marine biology. Many marine species rely on specific density layers for breeding, feeding, and migration. For instance, certain fish species may spawn in isopycnal layers where conditions are optimal for their eggs to develop. Disruptions to these layers, whether due to climate change or human activity, can have cascading effects on marine populations and biodiversity. In conclusion, the concept of isopycnal layers is fundamental to our understanding of ocean dynamics, climate regulation, and marine ecosystems. As we continue to explore the complexities of our oceans, the study of isopycnal surfaces will remain a vital area of research, helping us to unravel the mysteries of the underwater world and its impact on our planet. By grasping the importance of isopycnal dynamics, we can better appreciate the intricate relationships between oceanic processes and the broader environmental changes occurring around us.
在海洋学研究中,科学家必须理解的一个关键概念是密度及其对海洋洋流和分层的影响。一个常常在这个背景下出现的术语是等密度面,指的是流体中恒定密度的线或面。理解等密度面层对于理解海水如何移动以及与不同环境因素的相互作用至关重要。 海洋水域并不均匀;由于温度、盐度和压力的差异,它们具有不同的密度。等密度面的概念帮助我们可视化这些变化。例如,当我们考虑一个水体,如海洋或湖泊时,我们可以想象它根据密度分为不同的层。等密度面层代表了密度保持恒定的区域,即使其他属性如温度和盐度可能会变化。 等密度面层的重要性不仅仅是学术兴趣。它们在营养物质和热量在海洋中的运动中发挥着至关重要的作用。例如,当来自赤道的温暖水域向极地移动时,它沿着等密度面表面移动,保持其密度,并促进热量跨越广阔距离的运输。这个过程对调节全球气候模式和支持海洋生态系统至关重要。 此外,理解等密度面动态对于预测和建模海洋环流也至关重要。科学家使用各种工具和技术,如卫星观测和浮标,测量不同深度的温度和盐度。通过绘制这些测量值,研究人员可以识别等密度面层,并分析海洋某一部分的变化如何影响其他区域。这一知识在气候变化的背景下尤为重要,因为海洋密度的变化可能导致洋流模式的转变,从而影响天气系统。 除了在物理海洋学中的作用外,等密度面表面对海洋生物学也有影响。许多海洋物种依赖特定的密度层进行繁殖、觅食和迁徙。例如,某些鱼类可能在等密度面层中产卵,在那里条件最适合它们的卵子发育。对这些层的干扰,无论是由于气候变化还是人类活动,都可能对海洋种群和生物多样性产生连锁反应。 总之,等密度面层的概念是我们理解海洋动态、气候调节和海洋生态系统的基础。随着我们继续探索海洋的复杂性,对等密度面表面的研究将仍然是一个重要的研究领域,帮助我们揭开水下世界的奥秘及其对我们星球的影响。通过掌握等密度面动态的重要性,我们可以更好地欣赏海洋过程与我们周围环境变化之间的复杂关系。
文章标题:isopycnal的意思是什么
文章链接:https://www.liuxue886.cn/danci/399009.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论