karyogram
简明释义
英[/ˈkɛr.i.oʊ.ɡræm/]美[/ˈkɛr.i.oʊ.ɡræm/]
n. 染色体组型
英英释义
单词用法
同义词
核型 | 核型分析揭示了染色体异常。 | ||
染色体图谱 | 染色体图谱有助于识别遗传性疾病。 |
反义词
核型 | 核型分析揭示了染色体异常。 | ||
细胞图 | A cytogram can provide insights into cell structure and function. | 细胞图可以提供关于细胞结构和功能的见解。 |
例句
1.Conclusion: gene have different degree loses in abnormal chromosome karyogram, result in chromosomal gene linkage not equilibrium and and emergence clinical effect.
结论在染色体异常核型中,均有不同程度的基因缺失,造成基因连锁的不平衡,因而出现一些临床效应。
2.Conclusion: gene have different degree loses in abnormal chromosome karyogram, result in chromosomal gene linkage not equilibrium and and emergence clinical effect.
结论在染色体异常核型中,均有不同程度的基因缺失,造成基因连锁的不平衡,因而出现一些临床效应。
3.Results: Observation 26 Cases with different degree abnormal chromosome karyogram have different degree clinical effect.
结果由于染色体核型异常的不同,出现不同的临床效应。
4.The scientist prepared a detailed karyogram 染色体图谱 to analyze the genetic abnormalities in the sample.
科学家准备了一个详细的karyogram染色体图谱以分析样本中的遗传异常。
5.By examining the karyogram 染色体图谱, researchers could identify chromosomal disorders.
通过检查karyogram染色体图谱,研究人员能够识别染色体疾病。
6.A clear karyogram 染色体图谱 is essential for diagnosing genetic conditions.
清晰的karyogram染色体图谱对于诊断遗传病至关重要。
7.The laboratory technician created a karyogram 染色体图谱 from the patient's blood sample.
实验室技术员从患者的血液样本中创建了一个karyogram染色体图谱。
8.After analyzing the karyogram 染色体图谱, the geneticist concluded that there were no anomalies.
在分析了karyogram染色体图谱后,遗传学家得出结论,未发现异常。
作文
The study of genetics has always fascinated scientists and researchers alike. One of the essential tools in genetic research is the karyogram, which provides a visual representation of an organism's chromosomes. A karyogram is essentially a photographic or digital image of the chromosomes arranged in pairs, allowing for the analysis of their structure, number, and morphology. This tool plays a vital role in understanding genetic disorders, evolutionary biology, and even cancer research. To create a karyogram, scientists first need to collect cells from an organism, typically through a process called mitotic arrest, where cells are induced to stop dividing. Once the cells are arrested in metaphase, they can be stained and then observed under a microscope. The chromosomes will appear as distinct structures that can be photographed. These images are then arranged in a standard format, with homologous chromosomes paired together, which results in a karyogram. The significance of a karyogram cannot be overstated. For instance, in medicine, it is used to diagnose chromosomal abnormalities such as Down syndrome, Turner syndrome, and Klinefelter syndrome. Each of these conditions is associated with a specific chromosomal makeup, which can be identified through the analysis of a karyogram. By studying the arrangement and number of chromosomes, doctors can provide accurate diagnoses and appropriate treatments for patients. Furthermore, a karyogram is not only important in human genetics but also in the field of agriculture and animal breeding. Geneticists use karyograms to assess the genetic diversity of plant and animal species, helping to select individuals with desirable traits for breeding programs. This practice enhances food security and promotes sustainable agricultural practices. In evolutionary biology, the analysis of karyograms can provide insights into the evolutionary relationships between different species. By comparing the chromosome structures of various organisms, scientists can trace back their evolutionary lineage and understand how species have adapted over time. This comparative approach can reveal how certain traits have emerged and how genetic material has been conserved or altered through generations. Despite its many applications, creating a karyogram requires precision and expertise. The staining techniques and the method of capturing images must be meticulously executed to ensure accurate representation of the chromosomes. Moreover, interpreting a karyogram can be complex, requiring a deep understanding of genetics and cytogenetics. In conclusion, the karyogram serves as a critical tool in the field of genetics, providing invaluable information about chromosomes that can lead to significant medical, agricultural, and evolutionary insights. As technology advances, the methods of creating and analyzing karyograms will continue to improve, opening up new possibilities for research and application in various scientific fields. Understanding the complexities and implications of karyograms is essential for anyone interested in the intricate world of genetics and its impact on life as we know it.
遗传学的研究一直吸引着科学家和研究人员。基因研究中一个重要的工具就是染色体图谱,它提供了生物染色体的视觉表现。染色体图谱本质上是将染色体按对排列的照片或数字图像,使得我们能够分析它们的结构、数量和形态。这一工具在理解遗传疾病、进化生物学甚至癌症研究中发挥着至关重要的作用。 为了创建一个染色体图谱,科学家首先需要从生物体中收集细胞,通常通过一种称为有丝分裂停滞的过程,将细胞诱导停止分裂。一旦细胞在中期被阻止,它们就可以被染色,然后在显微镜下观察。染色体将呈现为独特的结构,可以拍照记录。这些图像随后按照标准格式排列,同源染色体成对组合,从而形成染色体图谱。 染色体图谱的重要性不容小觑。例如,在医学领域,它用于诊断染色体异常,如唐氏综合症、特纳综合症和克氏综合症。这些疾病都与特定的染色体组成相关,通过分析染色体图谱可以识别出来。通过研究染色体的排列和数量,医生可以为患者提供准确的诊断和适当的治疗。 此外,染色体图谱在农业和动物育种领域也同样重要。遗传学家利用染色体图谱评估植物和动物物种的遗传多样性,帮助选择具有优良性状的个体进行育种。这种做法增强了粮食安全并促进了可持续农业实践。 在进化生物学中,染色体图谱的分析可以提供不同物种之间进化关系的见解。通过比较各种生物的染色体结构,科学家可以追溯它们的进化谱系,了解物种如何随着时间的推移而适应。这种比较方法可以揭示某些特征是如何出现的,以及遗传物质是如何在几代人中得以保存或改变的。 尽管有许多应用,创建染色体图谱需要精确和专业知识。染色技术和捕捉图像的方法必须精心执行,以确保染色体的准确表示。此外,解释染色体图谱可能很复杂,需要深入理解遗传学和细胞遗传学。 总之,染色体图谱作为遗传学领域的关键工具,提供了关于染色体的宝贵信息,这可以带来重要的医学、农业和进化见解。随着技术的进步,创建和分析染色体图谱的方法将继续改进,为各个科学领域的研究和应用开辟新的可能性。理解染色体图谱的复杂性及其影响,对于任何对遗传学及其对我们生活的影响感兴趣的人来说都是至关重要的。
文章标题:karyogram的意思是什么
文章链接:https://www.liuxue886.cn/danci/401323.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论