mantissa
简明释义
n. [数]尾数;假数;定点部分;小数部分
n. (Mantissa)人名;(刚(布))曼蒂萨
复 数 m a n t i s s a s
英英释义
单词用法
尾数表示 | |
有效数字和尾数 | |
浮点数尾数 | |
计算尾数 | |
提取尾数 | |
对尾数进行四舍五入 |
同义词
小数部分 | 对数的mantissa表示小数部分。 |
反义词
指数 | The exponent in scientific notation indicates the power of ten. | 科学记数法中的指数表示十的幂。 | |
整数 | 整数用于计数和排序。 |
例句
1.Wait a minute, didn't I say that the mantissa ranged from 0 to 33,554,431?
等一下,我刚才是不是说尾数的范围是从0 到 33,554,431 ?
2.Putting these together, a float is interpreted as sign * mantissa * 2exponent.
综合起来,浮点数是这样表示的:sign*mantissa*2exponent 。
3.Of course, both exponent and mantissa are encoded using a binary system rather than a decimal system.
当然,幂和尾数都是用二进制数系统来编码,而不是十进制数系统。
4.The mantissa can also be found through bit masking, though the algorithm is far less obvious.
尽管算法不是很明显,但还是可以通过位屏蔽来查找尾数。
5.In the language of computer science precision is given in terms of the size of the mantissa and exponent.
在计算机科学的精确语言的尾数和指数的大小了。
6.This is a standard floating point representation that the first bit of mantissa must be 1.
这是一个标准的浮点表示法,特点是尾数的第一个元不可以是零。
7.In scientific notation, a number is expressed as a product of a coefficient and a power of ten, where the coefficient is the mantissa 尾数.
在科学计数法中,一个数字被表示为系数和十的幂的乘积,其中系数是mantissa 尾数。
8.To calculate logarithms, we often separate the integer part from the mantissa 尾数.
在计算对数时,我们通常将整数部分与mantissa 尾数分开。
9.The mantissa 尾数 determines the precision of a floating-point number.
在浮点数中,mantissa 尾数决定了精度。
10.When rounding numbers, the value of the mantissa 尾数 can significantly affect the final result.
在舍入数字时,mantissa 尾数的值可能会显著影响最终结果。
11.In computer science, understanding the mantissa 尾数 helps in optimizing numerical algorithms.
在计算机科学中,理解mantissa 尾数有助于优化数值算法。
作文
In the realm of mathematics and computer science, the term mantissa refers to the significant digits of a number in scientific notation. When we express a number in this form, it is typically written as a product of a coefficient and a power of ten. For instance, in the number 6.022 x 10^23, the mantissa is 6.022. This part of the number carries the precision and detail that we often need when dealing with very large or very small values. Understanding the concept of mantissa is crucial for anyone working in fields that require precise calculations, such as engineering, physics, or data science. The mantissa allows us to convey a number's value without being overwhelmed by the scale of the number itself. It simplifies communication and computation, enabling scientists and engineers to share their findings effectively. Additionally, the mantissa plays a significant role in floating-point representation in computer programming. In this context, numbers are stored in a way that can accommodate a vast range of values while maintaining precision. The floating-point format divides a number into three parts: the sign, the mantissa, and the exponent. The mantissa represents the significant digits, while the exponent indicates the scale of the number. For example, in the IEEE 754 standard for floating-point arithmetic, the mantissa is stored in a normalized form, which maximizes precision. The importance of the mantissa cannot be overstated, especially in applications where rounding errors can lead to significant discrepancies. For example, in numerical simulations, even a slight error in the mantissa can propagate through calculations, leading to inaccurate results. Therefore, understanding how to manipulate and maintain the integrity of the mantissa is essential for ensuring the accuracy of computational results. Moreover, the mantissa is not just a dry mathematical concept; it has practical implications in various real-world scenarios. Consider the field of finance, where accurate calculations are paramount. When dealing with interest rates, investment returns, or financial forecasts, the mantissa allows analysts to present figures that are both precise and meaningful. By focusing on the mantissa, financial professionals can better communicate the potential risks and rewards associated with different investment strategies. In summary, the mantissa serves as a fundamental component in both mathematics and computer science, representing the significant digits of a number. Its role extends beyond mere representation; it influences accuracy in calculations, enhances communication in scientific discourse, and ensures precision in financial analysis. As we continue to navigate an increasingly data-driven world, a solid understanding of concepts like the mantissa will be invaluable for professionals across various disciplines. Ultimately, grasping the significance of the mantissa empowers individuals to engage with numbers more effectively and make informed decisions based on quantitative data.
在数学和计算机科学领域,术语mantissa指的是科学计数法中数字的有效数字。当我们以这种形式表达一个数字时,它通常被写成系数和十的幂的乘积。例如,在数字6.022 x 10^23中,mantissa是6.022。这个数字的部分承载了我们在处理非常大或非常小的值时所需的精度和细节。 理解mantissa的概念对于任何从事需要精确计算的领域的人来说都是至关重要的,例如工程、物理或数据科学。mantissa使我们能够传达一个数字的价值,而不被数字本身的规模所压倒。它简化了沟通和计算,使科学家和工程师能够有效地分享他们的发现。 此外,mantissa在计算机编程中的浮点表示中也发挥着重要作用。在这种情况下,数字以可以容纳广泛值的方式存储,同时保持精度。浮点格式将数字分为三部分:符号、mantissa和指数。mantissa表示有效数字,而指数表示数字的规模。例如,在IEEE 754浮点算术标准中,mantissa以规范化形式存储,这最大限度地提高了精度。 mantissa的重要性不容小觑,尤其是在舍入误差可能导致重大差异的应用中。例如,在数值模拟中,即使mantissa中的轻微错误也可能在计算中传播,导致不准确的结果。因此,了解如何操作和维护mantissa的完整性对于确保计算结果的准确性至关重要。 此外,mantissa不仅仅是一个枯燥的数学概念;它在各种现实场景中具有实际意义。考虑金融领域,准确的计算至关重要。在处理利率、投资回报或财务预测时,mantissa使分析师能够呈现既精确又有意义的数字。通过关注mantissa,金融专业人士可以更好地传达与不同投资策略相关的潜在风险和收益。 总之,mantissa作为数学和计算机科学的基本组成部分,代表了数字的有效数字。它的作用超越了单纯的表示;它影响计算的准确性,增强了科学讨论中的沟通,并确保了金融分析的精确度。随着我们继续在一个越来越数据驱动的世界中航行,牢固理解像mantissa这样的概念对于各个学科的专业人士来说将是无价的。最终,掌握mantissa的重要性使个人能够更有效地处理数字,并根据定量数据做出明智的决策。
文章标题:mantissa的意思是什么
文章链接:https://www.liuxue886.cn/danci/413179.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论