microelectrode
简明释义
英[ˈmaɪkrəʊɪˌlektrəʊd]美[ˈmaɪkroʊɪˈlekˌtroʊd]
n. 微电极
英英释义
A microelectrode is a small electrode used to measure electrical activity in biological cells or tissues, often with a diameter of less than 1 millimeter. | 微电极是一种小型电极,用于测量生物细胞或组织中的电活动,直径通常小于1毫米。 |
单词用法
微电极阵列 | |
细胞内微电极 | |
玻璃微电极 | |
插入一个微电极 | |
从微电极记录 | |
制造一个微电极 |
同义词
反义词
例句
1.PVC matrix membrane calcium ion-selective microelectrode based an. organophosphate has been constructed.
研制了有机磷酸盐为活性物质的PVC膜钙离子选择性微电极。
2.Image information processing before the microelectrode arrays requires a suitable mathematical model for human visual information processing firstly.
而微电极之前的图像信息处理过程需要一个视觉信息处理模型为基础。
3.The 1. 5 order differential voltammetry and cyclic voltammetry are used to investigate the electrochemical oxidation of guanine at a carbon fiber microelectrode.
选用1.5次微分伏安法和循环伏安法对鸟嘌呤在碳纤维微电极上的电化学行为进行了研究。
4.Methods: The microelectrode recording technique was used to explore the electrophysiological properties in the Mauthner cell when stimulating the right vagus.
方法:刺激鲫鱼迷走神经,并运用微电极穿刺技术记录鲫鱼M细胞胞内电位变化。
5.The materials and methods for the fabrications of these microelectrode arrays are summarized.
总结制作这类电极的材料与方法;
6.Methods: The electrophysiological method, the standard glass microelectrode technology.
方法:常规电生理方法,标准玻璃微电极技术。
7.Researchers used a microelectrode to measure the electrical activity of individual neurons in the brain.
研究人员使用微电极测量大脑中单个神经元的电活动。
8.The microelectrode array allowed for high-resolution recordings from cardiac cells.
该微电极阵列允许对心脏细胞进行高分辨率记录。
9.By inserting a microelectrode into the muscle tissue, scientists could monitor contraction patterns.
通过将微电极插入肌肉组织,科学家能够监测收缩模式。
10.The development of the microelectrode technology has advanced our understanding of cellular processes.
该微电极技术的发展推动了我们对细胞过程的理解。
11.In vitro experiments with a microelectrode can provide insights into drug effects on neurons.
使用微电极的体外实验可以提供药物对神经元影响的见解。
作文
In the field of neuroscience, the use of advanced technology has revolutionized our understanding of the brain and its functions. One such technological advancement is the development of the microelectrode, a small device that can be used to measure electrical activity in neurons. The microelectrode allows researchers to gain insights into how neurons communicate with each other and how they respond to various stimuli. This tiny tool has opened up new avenues for studying brain disorders and developing potential treatments. The microelectrode is typically made from materials like glass or metal and is designed to be inserted into the brain tissue. Its small size enables it to target individual neurons without causing significant damage to surrounding cells. By recording the electrical signals generated by these neurons, scientists can analyze patterns of activity that are crucial for understanding brain function. For example, when a neuron fires, it generates an action potential, which is an electrical impulse that travels along its axon to communicate with other neurons. The microelectrode captures these impulses, providing valuable data for researchers. One of the most exciting applications of microelectrodes is in the study of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease. By using microelectrodes to monitor neuronal activity in animal models of these diseases, researchers can identify changes in electrical signaling that may contribute to the progression of the disease. This information is vital for developing targeted therapies that aim to restore normal neuronal function. Moreover, microelectrodes are also instrumental in brain-computer interface (BCI) technology. BCIs utilize microelectrodes to detect brain signals and translate them into commands for external devices, such as prosthetic limbs or computer systems. This technology holds immense potential for improving the quality of life for individuals with motor disabilities, enabling them to control devices through thought alone. The precision and sensitivity of microelectrodes make them ideal for capturing the subtle electrical signals associated with intention and movement. In addition to their applications in neuroscience, microelectrodes are also used in various fields, including cardiology and biosensing. In cardiology, microelectrodes can be employed to monitor heart rhythms and detect abnormalities, aiding in the diagnosis and treatment of cardiac conditions. In biosensing, microelectrodes can be utilized to detect specific biomolecules, providing critical information for medical diagnostics and environmental monitoring. Despite their many advantages, the use of microelectrodes comes with challenges. For instance, the insertion of microelectrodes into brain tissue can lead to inflammation and tissue damage, which may affect the accuracy of measurements over time. Researchers are continually working to improve the design and materials used in microelectrodes to minimize these adverse effects and enhance their longevity. In conclusion, microelectrodes are powerful tools that have significantly advanced our understanding of the brain and its functions. Their ability to record electrical activity at the level of individual neurons has provided invaluable insights into neurological diseases and has paved the way for innovative technologies like brain-computer interfaces. As research continues to evolve, the potential applications of microelectrodes will likely expand, offering new hope for patients with various medical conditions and enhancing our overall understanding of the complexities of the human brain.
在神经科学领域,先进技术的使用彻底改变了我们对大脑及其功能的理解。其中一种技术进步是微电极(microelectrode)的开发,这是一种可以用于测量神经元电活动的小型设备。微电极(microelectrode)使研究人员能够深入了解神经元如何相互交流以及它们如何对各种刺激作出反应。这种微小的工具为研究脑部疾病和开发潜在治疗方案开辟了新的途径。 微电极(microelectrode)通常由玻璃或金属等材料制成,设计用于插入脑组织。它的小尺寸使其能够靶向单个神经元,而不会对周围细胞造成重大损害。通过记录这些神经元产生的电信号,科学家们可以分析对理解大脑功能至关重要的活动模式。例如,当一个神经元发放时,它会产生一个动作电位,即沿着其轴突传播的电冲动,以与其他神经元进行通信。微电极(microelectrode)捕捉到这些冲动,为研究人员提供了宝贵的数据。 微电极(microelectrode)最令人兴奋的应用之一是在研究神经退行性疾病(如阿尔茨海默病和帕金森病)方面。通过使用微电极(microelectrode)监测这些疾病动物模型中的神经活动,研究人员可以识别电信号中的变化,这些变化可能促成疾病的进展。这些信息对于开发旨在恢复正常神经功能的靶向治疗至关重要。 此外,微电极(microelectrode)在脑-计算机接口(BCI)技术中也发挥着重要作用。BCI利用微电极(microelectrode)检测大脑信号并将其转化为外部设备的命令,例如假肢或计算机系统。这项技术对改善运动障碍患者的生活质量具有巨大潜力,使他们能够仅通过思维控制设备。微电极(microelectrode)的精确性和灵敏度使其非常适合捕捉与意图和运动相关的微妙电信号。 除了在神经科学中的应用外,微电极(microelectrode)还用于心脏病学和生物传感等多个领域。在心脏病学中,微电极(microelectrode)可用于监测心律和检测异常,帮助诊断和治疗心脏疾病。在生物传感中,微电极(microelectrode)可用于检测特定的生物分子,为医学诊断和环境监测提供关键信息。 尽管微电极(microelectrode)有许多优点,但其使用也面临挑战。例如,将微电极(microelectrode)插入脑组织可能导致炎症和组织损伤,这可能影响测量的准确性。研究人员正在不断努力改进微电极(microelectrode)的设计和材料,以最小化这些不良影响并提高其耐久性。 总之,微电极(microelectrode)是强大的工具,极大地推动了我们对大脑及其功能的理解。它们在单个神经元水平上记录电活动的能力为神经疾病提供了无价的见解,并为脑-计算机接口等创新技术铺平了道路。随着研究的不断发展,微电极(microelectrode)的潜在应用可能会扩展,为各种医疗条件的患者提供新的希望,并增强我们对人类大脑复杂性的整体理解。
文章标题:microelectrode的意思是什么
文章链接:https://www.liuxue886.cn/danci/417664.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论