mononucleotide
简明释义
英[ˌmɒnəʊˈnjuːklɪəˌtaɪd]美[ˌmɑnoˈnʊkliəˌtaɪd;ˌmɑnoˈnjʊk
n. [生化] 单核苷酸
英英释义
A mononucleotide is a basic building block of nucleic acids, consisting of a nitrogenous base, a five-carbon sugar, and one phosphate group. | 单核苷酸是核酸的基本构件,由一个氮碱基、一个五碳糖和一个磷酸基团组成。 |
单词用法
单核苷酸序列 | |
单核苷酸池 | |
单核苷酸合成 | |
单核苷酸分析 | |
脱氧核糖核酸单核苷酸 | |
核糖核酸单核苷酸 | |
单核苷酸三磷酸 | |
单核苷酸衍生物 |
同义词
核苷酸 | 核苷酸是DNA和RNA的基本组成单位。 | ||
核苷酸磷酸盐 | 单核苷酸在细胞代谢中发挥着关键作用。 |
反义词
多核苷酸 | Polynucleotides are essential for the structure of DNA and RNA. | 多核苷酸是DNA和RNA结构的重要组成部分。 | |
二核苷酸 | 二核苷酸可以在细胞信号传导中发挥作用。 |
例句
1.The present invention relates to gene polymorphism detection method based on DNA adaptor and belongs to method of detecting polymorphism of DNA mononucleotide.
本发明一种基于DNA适配器的基因多态性测定法,属于一种检测DNA单核苷酸多态性的方法。
2.The present invention relates to gene polymorphism detection method based on DNA adaptor and belongs to method of detecting polymorphism of DNA mononucleotide.
本发明一种基于DNA适配器的基因多态性测定法,属于一种检测DNA单核苷酸多态性的方法。
3.A mononucleotide, C10H14N5O7P, found in animal cells and reversibly convertible to ADP and ATP; adenosine monophosphate.
一磷酸腺苷单核苷酸,C10 H 14n5o 7p,发现于动物细胞中并能可逆地转化为二磷酸腺苷和三磷酸腺苷;一磷酸腺苷。
4.FMN (flavin mononucleotide) A derivative of riboflavin that is a coenzyme in electron-transfer reactions.
黄素单核苷酸(FMN):核黄素的衍生物,在电子传递反应中是一种辅酶,作为多种脱氢酶的。
5.This invention involves a method for detecting the property of mononucleotide of DNA.
本发明涉及一种检测脱氧核糖核酸的单核苷酸性质的方法。
6.In molecular biology, a mononucleotide 单核苷酸 serves as the basic building block of nucleic acids.
在分子生物学中,mononucleotide 单核苷酸 是核酸的基本构建块。
7.Researchers are studying how mononucleotides 单核苷酸 affect gene expression.
研究人员正在研究 mononucleotides 单核苷酸 如何影响基因表达。
8.The synthesis of mononucleotides 单核苷酸 is crucial for DNA replication.
合成 mononucleotides 单核苷酸 对于DNA复制至关重要。
9.A mononucleotide 单核苷酸 can be phosphorylated to form a nucleotide.
一个 mononucleotide 单核苷酸 可以被磷酸化形成一个核苷酸。
10.In the lab, we isolated a specific mononucleotide 单核苷酸 from the DNA sample.
在实验室中,我们从DNA样本中分离出一种特定的 mononucleotide 单核苷酸 。
作文
The study of genetics has revolutionized our understanding of life at the molecular level. One of the fundamental building blocks of nucleic acids, which are essential for all living organisms, is the mononucleotide. A mononucleotide is a simple unit that consists of three components: a nitrogenous base, a sugar molecule, and a phosphate group. These components work together to form the backbone of DNA and RNA, the molecules responsible for storing and transmitting genetic information. In the realm of molecular biology, mononucleotides play a crucial role in various cellular processes. For instance, when cells replicate their DNA, they rely on mononucleotides to provide the necessary building blocks for new strands of DNA. This process is vital for growth, development, and repair in living organisms. Moreover, mononucleotides are not only important for DNA and RNA synthesis but also serve as energy carriers within the cell. Adenosine triphosphate (ATP), a well-known energy currency of the cell, is derived from a specific type of mononucleotide called adenosine monophosphate (AMP). When cells require energy, they break down ATP into AMP, releasing energy that powers various cellular functions. The significance of mononucleotides extends beyond their structural and energetic roles. They are also involved in signaling pathways that regulate cellular activities. For example, cyclic adenosine monophosphate (cAMP) is a derivative of a mononucleotide that acts as a secondary messenger in many biological processes, including hormone signaling and metabolism regulation. Through these pathways, mononucleotides help cells respond to changes in their environment, ensuring proper functioning and adaptation. Research into mononucleotides has opened new avenues in biotechnology and medicine. Scientists are exploring the potential of mononucleotides in gene therapy, where they can be used to deliver genetic material into cells to correct genetic disorders. Additionally, mononucleotides are being studied for their role in aging and disease, as understanding their function may lead to breakthroughs in treatments for various health conditions. In conclusion, mononucleotide is a term that encapsulates a vital aspect of molecular biology. Its importance in the structure of nucleic acids, energy transfer, and cellular signaling underscores its role in sustaining life. As research continues to delve deeper into the world of mononucleotides, we can anticipate exciting advancements that may enhance our understanding of genetics and improve human health. The more we learn about mononucleotides, the clearer it becomes that these tiny molecules have a profound impact on the complexity of life itself.
基因学的研究彻底改变了我们对生命分子层面理解的方式。核酸的基本构件之一是单核苷酸。单核苷酸是一个简单的单位,由三部分组成:氮碱基、糖分子和磷酸基团。这些组成部分共同形成了DNA和RNA的骨架,这些分子负责存储和传递遗传信息。 在分子生物学领域,单核苷酸在各种细胞过程中发挥着至关重要的作用。例如,当细胞复制其DNA时,它们依赖于单核苷酸为新的DNA链提供必要的构建块。这个过程对生物体的生长、发育和修复至关重要。 此外,单核苷酸不仅对DNA和RNA合成重要,还作为细胞内的能量载体。三磷酸腺苷(ATP)是细胞中著名的能量货币,源自一种特定类型的单核苷酸,称为腺苷单磷酸(AMP)。当细胞需要能量时,它们将ATP分解为AMP,释放出能量以驱动各种细胞功能。 单核苷酸的重要性超越了它们的结构和能量角色。它们还参与调节细胞活动的信号通路。例如,环腺苷单磷酸(cAMP)是一种单核苷酸的衍生物,作为许多生物过程中的第二信使,包括激素信号传导和代谢调节。通过这些通路,单核苷酸帮助细胞应对环境变化,确保正常功能和适应。 对单核苷酸的研究为生物技术和医学开辟了新的途径。科学家们正在探索单核苷酸在基因治疗中的潜力,通过它们将遗传物质传递到细胞中,以纠正遗传疾病。此外,单核苷酸在衰老和疾病中的作用也正在研究中,因为理解它们的功能可能会导致对各种健康状况的突破性治疗。 总之,单核苷酸是一个涵盖分子生物学重要方面的术语。它在核酸结构、能量转移和细胞信号传递中的重要性强调了它在维持生命中的作用。随着研究继续深入单核苷酸的世界,我们可以期待令人兴奋的进展,这些进展可能增强我们对遗传学的理解并改善人类健康。我们对单核苷酸了解得越多,就越清楚这些微小分子对生命复杂性的深远影响。
文章标题:mononucleotide的意思是什么
文章链接:https://www.liuxue886.cn/danci/421426.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论