multiplet
简明释义
n. 多重态;多重谱线
英英释义
单词用法
核多重态 | |
光谱多重态 | |
多重态分裂 | |
三重态多重态 | |
四重态多重态 | |
多重态模式 |
同义词
组 | 天空中的一组星星 | ||
集合 | 为这项工作准备的一套工具 | ||
簇 | 藤上的一串葡萄 | ||
收集 | 艺术品的收藏 |
反义词
例句
1.A quantum number equal to twice the average electric charge of a particle multiplet or, equivalently, to the sum of the strangeness and the baryon number.
超荷一个量子量,等于一个粒子多重线谱的平均电极;或者相当于量子数和重子的数量的总和。
2.A quantum number equal to twice the average electric charge of a particle multiplet or, equivalently, to the sum of the strangeness and the baryon number.
超荷一个量子量,等于一个粒子多重线谱的平均电极;或者相当于量子数和重子的数量的总和。
3.A quantum number equal to twice the average electric charge of a particle multiplet or equivalently to the sum of the strangeness and the baryon number.
超荷一个量子量,等于一个粒子多重线谱的平均电极;或者相当于量子数和重子的数量的总和。
4.It briefly expounds the relation among ACE gene, oxygen endurance, sports heart obesity, the multiplet of ACE gene and exercise performance.
主要阐述ace基因与有氧耐力、运动性心脏肥大以及ACE基因多态性与运动能力的关系。
5.Each particle in the multiplet has the same strangeness.
在多重态内的每个粒子都有同样的奇异数。
6.In NMR spectroscopy, a signal appears as a multiplet 多重谱线 due to spin-spin coupling between neighboring nuclei.
在核磁共振光谱中,由于相邻核之间的自旋-自旋耦合,信号表现为一个多重谱线。
7.The multiplet 多重谱线 structure in the spectrum indicates the presence of multiple adjacent protons.
光谱中的多重谱线结构表明存在多个相邻质子。
8.Chemists often analyze the multiplet 多重谱线 patterns to determine the number of hydrogen atoms in a compound.
化学家们经常分析多重谱线模式以确定化合物中氢原子的数量。
9.The observed multiplet 多重谱线 can provide insights into the molecular environment of the sample.
观察到的多重谱线可以为样品的分子环境提供洞察。
10.In high-resolution spectroscopy, a multiplet 多重谱线 can reveal fine details about molecular interactions.
在高分辨率光谱中,多重谱线可以揭示有关分子相互作用的细节。
作文
In the field of physics and chemistry, the term multiplet refers to a group of closely spaced energy levels or states that arise from the interactions between particles, such as electrons in an atom or molecules in a compound. Understanding the concept of multiplet is crucial for interpreting various spectroscopic techniques, which are essential tools in both research and practical applications. For instance, when studying the electronic structure of atoms, we often encounter multiplet patterns in the spectra produced by transitions between energy levels. These patterns provide valuable information about the arrangement of electrons and their interactions with one another. The significance of multiplet structures can be observed in the analysis of atomic spectra. When an electron transitions from a higher energy level to a lower one, it emits light at specific wavelengths. If multiple electrons are involved, the resulting spectrum can display a series of lines known as a multiplet. This phenomenon occurs due to the splitting of energy levels caused by various factors, including spin-orbit coupling and electron-electron interactions. The presence of a multiplet indicates that there are several closely related energy states, which can reveal much about the underlying physical system. In nuclear magnetic resonance (NMR) spectroscopy, the concept of multiplet is equally important. NMR is a powerful technique used to determine the structure of organic compounds. When a sample is placed in a magnetic field and exposed to radiofrequency radiation, the nuclei of certain atoms resonate at specific frequencies. The resulting signals can appear as multiplets in the spectrum, providing insights into the number of neighboring nuclei and their interactions. Analyzing these multiplet patterns allows chemists to deduce the connectivity of atoms within a molecule, ultimately leading to a better understanding of its structure and properties. Moreover, the study of multiplet structures extends beyond traditional chemistry and physics. In modern materials science, researchers investigate how multiplet behavior influences the electronic properties of novel materials, such as transition metal oxides and superconductors. The intricate interplay between electronic states can lead to fascinating phenomena, including magnetism and conductivity. By exploring multiplet effects in these materials, scientists can design new compounds with tailored properties for applications in electronics and energy storage. In summary, the term multiplet, which signifies a set of closely spaced energy levels, plays a pivotal role in various scientific disciplines. From atomic and molecular spectroscopy to advanced materials research, understanding multiplet structures enhances our ability to interpret experimental data and uncover the fundamental principles governing the behavior of matter. As we continue to explore the complexities of the natural world, the concept of multiplet will undoubtedly remain a cornerstone in our quest for knowledge and innovation.
在物理和化学领域,术语multiplet指的是由于粒子之间的相互作用(例如原子中的电子或化合物中的分子)而产生的一组紧密分布的能级或状态。理解multiplet的概念对于解释各种光谱技术至关重要,这些技术是研究和实际应用中的重要工具。例如,在研究原子的电子结构时,我们经常会在能级之间的跃迁中遇到multiplet模式。这些模式提供了关于电子排列及其相互作用的宝贵信息。 multiplet结构的重要性可以通过原子光谱分析来观察。当一个电子从较高的能级跃迁到较低的能级时,它会以特定的波长发出光。如果涉及多个电子,则所产生的光谱可能显示出一系列被称为multiplet的线。这种现象是由于自旋-轨道耦合和电子-电子相互作用等各种因素引起的能级分裂所致。multiplet的存在表明存在几个紧密相关的能级,这可以揭示出关于潜在物理系统的许多信息。 在核磁共振(NMR)光谱中,multiplet的概念同样重要。NMR是一种用于确定有机化合物结构的强大技术。当样品放置在磁场中并暴露于射频辐射时,某些原子的核将在特定频率下共振。结果信号在光谱中可能出现为multiplet,提供了有关邻近核数量及其相互作用的见解。通过分析这些multiplet模式,化学家可以推断分子内原子的连接性,从而最终更好地理解其结构和性质。 此外,对multiplet结构的研究超越了传统的化学和物理学。在现代材料科学中,研究人员调查multiplet行为如何影响新型材料的电子性质,例如过渡金属氧化物和超导体。电子状态之间的复杂相互作用可能导致迷人的现象,包括磁性和导电性。通过探索这些材料中的multiplet效应,科学家可以设计出具有定制性能的新化合物,用于电子和储能应用。 总之,术语multiplet,表示一组紧密分布的能级,在各个科学学科中发挥着关键作用。从原子和分子光谱到先进材料研究,理解multiplet结构增强了我们解释实验数据和揭示物质行为基本原理的能力。随着我们继续探索自然世界的复杂性,multiplet的概念无疑将继续成为我们追求知识和创新的基石。
文章标题:multiplet的意思是什么
文章链接:https://www.liuxue886.cn/danci/423455.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论