multiplicand
简明释义
英[ˌmʌltɪplɪˈkænd]美[ˌmʌltəplɪˈkænd]
n. [数] 被乘数
英英释义
The number that is to be multiplied by another number in a multiplication operation. | 在乘法运算中要与另一个数字相乘的数字。 |
单词用法
被乘数和乘数 | |
找出被乘数 | |
第一个被乘数 | |
第二个被乘数 |
同义词
因子 | 在方程 5 x 3 中,5 是被乘数。 |
反义词
除数 | In division, the divisor is the number by which another number is divided. | 在除法中,除数是被另一个数所除的数。 | |
商 | The quotient is the result obtained from dividing one number by another. | 商是将一个数除以另一个数所得到的结果。 |
例句
1.It USES binary counters for the conversion of the multiplicand from parallel to pulse-train form.
它采用二进制计数器以把被乘数由并行形式转换成脉冲序列形式。
2.It USES binary counters for the conversion of the multiplicand from parallel to pulse-train form.
它采用二进制计数器以把被乘数由并行形式转换成脉冲序列形式。
3.The number that is or is to be multiplied by another. In8?2, the multiplicand is32.
被乘数被或将被另一个数相乘的数。在乘式8?2中, 被乘数是32。
4.Again, in such a way that 1 goes to the multiplicand.
同样,在这样一种方式1去被乘数。
5.In the equation 5 × 3, the number 5 is the multiplicand (被乘数).
在方程5 × 3中,数字5是被乘数.
6.To find the area of a rectangle, you multiply the length by the width; here, the length is the multiplicand (被乘数).
要找到矩形的面积,你需要将长度乘以宽度;在这里,长度是被乘数.
7.When calculating 12 × 4, the number 12 serves as the multiplicand (被乘数).
在计算12 × 4时,数字12充当被乘数.
8.In multiplication, the multiplicand (被乘数) is the value being multiplied.
在乘法中,被乘数是正在被乘的值.
9.During our math lesson, we learned that in the expression 7 × 9, 7 is the multiplicand (被乘数).
在我们的数学课上,我们了解到在表达式7 × 9中,7是被乘数.
作文
In the world of mathematics, understanding the fundamental concepts is essential for building a strong foundation. One such concept is the term multiplicand, which refers to a number that is to be multiplied by another number in a multiplication operation. For example, in the equation 4 × 5 = 20, the number 4 is the multiplicand. This term is crucial when learning about multiplication because it helps to clarify the roles of the numbers involved in the operation. When we think about multiplication, it is often viewed as repeated addition. For instance, multiplying 4 by 5 can be interpreted as adding 4 together five times: 4 + 4 + 4 + 4 + 4 = 20. Here, the multiplicand (4) is added repeatedly, which makes it easier to visualize the process of multiplication. Understanding this concept aids students in grasping more complex mathematical ideas later on. Moreover, the multiplicand plays a significant role in various real-world applications. For instance, in a scenario where a person is buying several items at a store, knowing the price of a single item and the total number of items can help determine the total cost. If each item costs $3 and a person buys 5 items, the calculation would involve identifying the multiplicand (3) and multiplying it by the quantity (5). Thus, 3 × 5 = 15, indicating that the total cost will be $15. In educational settings, teachers often emphasize the importance of understanding terms like multiplicand to ensure that students can communicate effectively about mathematics. When students learn to identify the multiplicand in multiplication problems, they develop a better understanding of how numbers interact with one another. This knowledge not only enhances their mathematical skills but also boosts their confidence in tackling more challenging problems. Furthermore, the concept of the multiplicand extends beyond simple arithmetic. In algebra, for instance, when dealing with variables, the multiplicand can be a variable itself. For example, in the expression x × 3, x is the multiplicand, and understanding its role is vital for solving equations and manipulating algebraic expressions. In conclusion, the term multiplicand is a foundational concept in mathematics that deserves attention and understanding. It not only helps in performing basic multiplication but also serves as a stepping stone to more advanced mathematical concepts. By recognizing the multiplicand in various mathematical operations, students can enhance their problem-solving skills and apply these principles to real-life situations. Therefore, mastering the idea of the multiplicand is essential for anyone seeking to improve their mathematical abilities and gain confidence in their understanding of numbers.
在数学的世界里,理解基本概念对于建立坚实的基础至关重要。其中一个概念是术语乘数,它指的是在乘法运算中要与另一个数字相乘的数字。例如,在方程4 × 5 = 20中,数字4就是乘数。这个术语在学习乘法时至关重要,因为它有助于澄清参与运算的数字的角色。 当我们想到乘法时,它通常被视为重复加法。例如,将4乘以5可以解释为将4加在一起五次:4 + 4 + 4 + 4 + 4 = 20。在这里,乘数(4)被重复相加,这使得可视化乘法过程变得更容易。理解这个概念有助于学生掌握更复杂的数学思想。 此外,乘数在各种现实世界的应用中发挥着重要作用。例如,在一个人去商店购买几件商品的场景中,知道单个商品的价格和总数量可以帮助确定总成本。如果每件商品的价格是3美元,而一个人购买了5件商品,那么计算就涉及到识别乘数(3)并将其乘以数量(5)。因此,3 × 5 = 15,表示总成本将是15美元。 在教育环境中,教师通常强调理解像乘数这样的术语的重要性,以确保学生能够有效地沟通数学。当学生学会识别乘法问题中的乘数时,他们对数字之间的互动有了更好的理解。这种知识不仅增强了他们的数学技能,还提升了他们解决更具挑战性问题的信心。 此外,乘数的概念超越了简单的算术。在代数中,例如,在处理变量时,乘数本身也可以是一个变量。例如,在表达式x × 3中,x就是乘数,理解它的角色对于解决方程和操作代数表达式至关重要。 总之,术语乘数是数学中的一个基础概念,值得关注和理解。它不仅有助于进行基本的乘法运算,而且还作为更高级数学概念的跳板。通过识别各种数学运算中的乘数,学生可以提高他们的问题解决能力,并将这些原则应用于现实生活中的情况。因此,掌握乘数的概念对于任何希望提高数学能力并增强对数字理解信心的人来说都是必不可少的。
文章标题:multiplicand的意思是什么
文章链接:https://www.liuxue886.cn/danci/423482.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论