nucleosynthesis
简明释义
英[ˌnjuːklɪəʊˈsɪnθɪsɪs]美[ˌnuːklioʊˈsɪnθəsɪs]
n. [天] 核合成
英英释义
单词用法
大爆炸核合成 | |
恒星核合成 | |
核合成过程 | |
核合成反应 |
同义词
反义词
破坏 | The destruction of stars leads to the dispersal of elements into space. | 星星的破坏导致元素散布到太空中。 | |
分解 | Decomposition of organic matter is essential for nutrient cycling. | 有机物的分解对养分循环至关重要。 |
例句
1.The yellow band indicates the amount of matter that can reside in "normal" matter, or baryons, as inferred from Nucleosynthesis.
黄色部分显示以“常态”物质存在的物质数量,或从核合成推论出的重子。
2.The yellow band indicates the amount of matter that can reside in "normal" matter, or baryons, as inferred from Nucleosynthesis.
黄色部分显示以“常态”物质存在的物质数量,或从核合成推论出的重子。
3.The explosive nucleosynthesis in the astrophysical environment and its close link to nuclear structure are discussed.
讨论了天体物理环境中爆发性核合成及其与核结构的紧密关系。
4.S-process nucleosynthesis may be a useful constraint for the evolution and convection in massive stars.
过程核合成可以为大质量星的演化和对流提供有用的约束。
5.It is very significant to Ba stars for heavy-element nucleosynthesis and Galactic chemical evolution.
钡星对于重元素核合成及星系化学演化的研究都有非常重要的意义。
6.The process of stellar evolution is crucial for understanding how elements are formed through nucleosynthesis.
恒星演化的过程对理解元素是如何通过核合成形成的至关重要。
7.Scientists study the nucleosynthesis that occurs in supernovae to learn about the origins of heavy elements.
科学家研究超新星中发生的核合成以了解重元素的起源。
8.The Big Bang theory explains the initial nucleosynthesis that created the lightest elements in the universe.
大爆炸理论解释了最初的核合成,它创造了宇宙中最轻的元素。
9.During nucleosynthesis, hydrogen and helium are fused to form heavier elements in stars.
在核合成过程中,氢和氦在恒星中融合形成更重的元素。
10.Research on nucleosynthesis helps astronomers understand the chemical composition of stars.
对核合成的研究帮助天文学家理解恒星的化学成分。
作文
Nucleosynthesis is a fundamental process in the universe that refers to the formation of new atomic nuclei from existing nucleons. This process plays a crucial role in the creation of elements, which are the building blocks of matter. Understanding nucleosynthesis is essential for comprehending the origins of the elements that make up stars, planets, and ultimately, life itself. The concept of nucleosynthesis can be traced back to the early moments of the universe, shortly after the Big Bang. During this time, the universe was incredibly hot and dense, allowing for the fusion of protons and neutrons to form the lightest elements, primarily hydrogen and helium. This era is known as Big Bang nucleosynthesis, and it produced about 75% hydrogen and 25% helium, with trace amounts of lithium and beryllium. These primordial elements serve as the foundation for all subsequent chemical processes in the universe. As the universe expanded and cooled, these primordial elements began to clump together under the force of gravity, forming stars. Inside these stars, conditions became suitable for nuclear fusion, a process that allows lighter elements to combine into heavier ones. This stellar nucleosynthesis is responsible for creating most of the elements found on the periodic table. For example, when hydrogen atoms fuse, they create helium. As stars evolve and exhaust their hydrogen supply, they begin to fuse helium into heavier elements like carbon, oxygen, and even iron. Once a star has formed iron in its core, it reaches a critical point. Iron fusion does not release energy; instead, it consumes energy. When the core becomes too heavy, it can no longer support itself against gravitational collapse, leading to a supernova explosion. This catastrophic event disperses the elements created through nucleosynthesis into space, enriching the interstellar medium with heavy elements. This material eventually contributes to the formation of new stars, planets, and other celestial bodies. Moreover, nucleosynthesis is not limited to the processes occurring within stars. There are also processes such as explosive nucleosynthesis, which occurs during supernova explosions and neutron star collisions. These events can produce even heavier elements, such as gold and uranium, through rapid neutron capture processes. This highlights the dynamic nature of nucleosynthesis and its significance in the cosmic cycle of matter. In summary, nucleosynthesis is a vital process that explains how the elements we observe today came into existence. From the Big Bang to the life cycles of stars, nucleosynthesis illustrates the intricate connections between various cosmic phenomena. By studying nucleosynthesis, scientists gain insights into the history of the universe and the processes that govern the formation of matter. Understanding this concept not only enhances our knowledge of astrophysics but also deepens our appreciation for the complex tapestry of the universe we inhabit.
核合成是宇宙中的一个基本过程,指的是从现有核子中形成新的原子核。这个过程在元素的创造中起着至关重要的作用,而元素是物质的构建块。理解核合成对于理解构成恒星、行星以及最终生命本身的元素的起源至关重要。 核合成的概念可以追溯到宇宙的早期时刻,即大爆炸之后不久。在这一时期,宇宙极其炽热和稠密,使得质子和中子能够融合形成最轻的元素,主要是氢和氦。这一阶段被称为大爆炸核合成,它产生了约75%的氢和25%的氦,以及微量的锂和铍。这些原始元素作为宇宙中所有后续化学过程的基础。 随着宇宙的膨胀和冷却,这些原始元素开始在引力的作用下聚集在一起,形成恒星。在这些恒星内部,条件变得适合核聚变,这一过程允许较轻的元素结合成较重的元素。这种恒星核合成负责创造周期表上的大多数元素。例如,当氢原子融合时,它们会产生氦。当恒星演化并耗尽其氢供应时,它们开始将氦聚变成更重的元素,如碳、氧,甚至铁。 一旦恒星的核心形成了铁,它就达到了一个临界点。铁的聚变不会释放能量;相反,它消耗能量。当核心变得过重时,就无法再抵抗引力的崩溃,导致超新星爆炸。这个灾难性的事件将通过核合成创造的元素散布到太空中,丰富了星际介质中的重元素。这些材料最终有助于新恒星、行星和其他天体的形成。 此外,核合成不仅限于发生在恒星内部的过程。还有一些过程,例如爆炸性核合成,发生在超新星爆炸和中子星碰撞期间。这些事件可以通过快速中子捕获过程产生甚至更重的元素,如金和铀。这突显了核合成的动态特性及其在物质宇宙循环中的重要性。 总之,核合成是一个重要的过程,解释了我们今天观察到的元素是如何存在的。从大爆炸到恒星的生命周期,核合成展示了各种宇宙现象之间的复杂联系。通过研究核合成,科学家们获得了对宇宙历史和支配物质形成过程的洞察。理解这一概念不仅增强了我们对天体物理学的知识,也加深了我们对所居住的宇宙复杂结构的欣赏。
文章标题:nucleosynthesis的意思是什么
文章链接:https://www.liuxue886.cn/danci/429187.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论