nucleotide
简明释义
英[ˈnjuːklɪətaɪd]美[ˈnuːkliətaɪd]
n. (生化)核苷酸
英英释义
单词用法
核苷酸序列;核酸序列;核苷酸顺序 |
同义词
核苷 | Nucleotides are the building blocks of nucleic acids like DNA and RNA. | 核苷酸是DNA和RNA等核酸的基本组成单元。 |
反义词
聚合物 | DNA是由核苷酸组成的聚合物。 | ||
大分子 | Proteins are macromolecules that can be formed from amino acids. | 蛋白质是由氨基酸形成的大分子。 |
例句
1.The variations of nucleotide mainly occurred the replace of synonymous codons.
核苷酸序列变化主要表现在同义密码子的置换。
2.Some functions of Purine Nucleotide circulation in skeletal muscle are of great importance.
在骨骼肌内,嘌呤核苷酸循环有几个方面的作用显得尤其重要。
3.Ricardo is experimenting with closely related, more reactive and reliable nucleotide systems.
里卡多在用与之密切相关的活性更强更可靠的核苷酸系统进行实验。
4.Their trouble with language had been caused by the change of a single nucleotide of dna-just one letter in the genetic sequence.
他们的语言问题仅仅是因为DNA中一个核苷酸发生了改变,也就是说基因序列中有一个字母被改写了。
5.The discussion is emphasized on the problem of complexity of nucleotide sequences.
着重讨论了从三个层次研究核酸序列复杂性的问题。
6.The breakthrough permits direct detection of each nucleotide, allowing an entire gene to be sequenced in about an hour.
这个重大的突破允许直接检测每个核苷酸,可以在大约一小时之内测序整个基因。
7.A nucleotide is the basic building block of DNA.
一个核苷酸是DNA的基本构建单元。
8.Each nucleotide consists of a sugar, a phosphate group, and a nitrogenous base.
每个核苷酸由一个糖分子、一个磷酸基团和一个氮碱基组成。
9.In RNA, the nucleotide uracil replaces thymine found in DNA.
在RNA中,核苷酸尿嘧啶替代了DNA中的胸腺嘧啶。
10.The sequence of nucleotides determines the genetic code.
核苷酸的序列决定了遗传密码。
11.Mutations can occur when a nucleotide is incorrectly paired during DNA replication.
在DNA复制过程中,当一个核苷酸配对错误时,可能会发生突变。
作文
Nucleotides are the fundamental building blocks of nucleic acids, which include DNA and RNA. Each nucleotide (核苷酸) consists of three components: a phosphate group, a sugar molecule, and a nitrogenous base. The sequence of these nucleotides (核苷酸) in a DNA or RNA strand encodes genetic information that is essential for the development, functioning, and reproduction of all living organisms. The importance of nucleotides (核苷酸) cannot be overstated. They play a crucial role in various biological processes, including protein synthesis, cell signaling, and energy transfer. For instance, ATP (adenosine triphosphate) is a type of nucleotide (核苷酸) that serves as the primary energy currency of the cell. When cells require energy to perform work, they break down ATP to release energy, which is then utilized in various cellular activities. In addition to their role in energy transfer, nucleotides (核苷酸) are also pivotal in the process of DNA replication and transcription. During DNA replication, enzymes called DNA polymerases add nucleotides (核苷酸) to the growing DNA strand, ensuring that the genetic information is accurately copied for cell division. Similarly, during transcription, the DNA sequence is used as a template to synthesize RNA, which involves the incorporation of specific nucleotides (核苷酸) that correspond to the DNA template. Moreover, the diversity of nucleotides (核苷酸) is reflected in the variety of nitrogenous bases they contain, which can be classified into two categories: purines and pyrimidines. Purines include adenine (A) and guanine (G), while pyrimidines consist of cytosine (C), thymine (T), and uracil (U). The specific pairing of these bases—adenine with thymine (or uracil in RNA) and guanine with cytosine—forms the basis of the double helix structure of DNA, enabling the stable storage of genetic information. Research into nucleotides (核苷酸) has profound implications for biotechnology and medicine. Understanding how nucleotides (核苷酸) function and interact can lead to advancements in genetic engineering, gene therapy, and the development of new pharmaceuticals. For example, scientists can design synthetic nucleotides (核苷酸) that can be incorporated into DNA or RNA strands to modify genetic sequences, potentially correcting genetic disorders or enhancing desirable traits in organisms. In conclusion, nucleotides (核苷酸) are essential molecules that serve as the foundation of life. They are not only critical for the structure and function of nucleic acids but also play significant roles in energy transfer and cellular processes. As our understanding of nucleotides (核苷酸) continues to evolve, so too does the potential for innovative applications in science and medicine, highlighting their importance in both basic research and practical applications. The study of nucleotides (核苷酸) will undoubtedly remain a central focus in the fields of biology and biochemistry for years to come.
核苷酸是核酸的基本构建块,包括DNA和RNA。每个核苷酸由三部分组成:磷酸基、糖分子和氮碱基。DNA或RNA链中这些核苷酸的序列编码了对所有生物体的发展、功能和繁殖至关重要的遗传信息。 核苷酸的重要性不容小觑。它们在各种生物过程中发挥着关键作用,包括蛋白质合成、细胞信号传导和能量转移。例如,ATP(腺苷三磷酸)是一种核苷酸,作为细胞的主要能量货币。当细胞需要能量来执行工作时,它们会分解ATP以释放能量,然后用于各种细胞活动。 除了在能量转移中的作用外,核苷酸在DNA复制和转录过程中也至关重要。在DNA复制过程中,称为DNA聚合酶的酶将核苷酸添加到正在增长的DNA链中,确保遗传信息在细胞分裂时被准确复制。同样,在转录过程中,DNA序列被用作合成RNA的模板,这涉及到特定核苷酸的加入,这些核苷酸与DNA模板相对应。 此外,核苷酸的多样性反映在它们所含的氮碱基的多样性上,可以分为两类:嘌呤和嘧啶。嘌呤包括腺嘌呤(A)和鸟嘌呤(G),而嘧啶则由胞嘧啶(C)、胸腺嘧啶(T)和尿嘧啶(U)组成。这些碱基的特定配对——腺嘌呤与胸腺嘧啶(或RNA中的尿嘧啶)配对,鸟嘌呤与胞嘧啶配对——形成了DNA双螺旋结构的基础,使遗传信息得以稳定存储。 对核苷酸的研究对生物技术和医学有深远影响。理解核苷酸的功能和相互作用可以推动基因工程、基因治疗和新药开发的进步。例如,科学家可以设计合成的核苷酸,这些核苷酸可以被纳入DNA或RNA链中,以修改基因序列,潜在地纠正遗传疾病或增强生物体的理想特征。 总之,核苷酸是作为生命基础的基本分子。它们不仅对核酸的结构和功能至关重要,而且在能量转移和细胞过程中的作用也很显著。随着我们对核苷酸的理解不断发展,科学和医学中创新应用的潜力也在增加,突显了它们在基础研究和实际应用中的重要性。对核苷酸的研究无疑将在生物学和生物化学领域继续成为焦点。
文章标题:nucleotide的意思是什么
文章链接:https://www.liuxue886.cn/danci/429194.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论