octal
简明释义
adj. [数] 八进制的
英英释义
Relating to the base eight number system, which uses digits from 0 to 7. | 与八进制数系统相关,使用的数字范围为0到7。 |
单词用法
n. 八进制数 |
同义词
八进制 | 八进制数系统常用于计算机中。 | ||
八进制的 | In programming, you may encounter base-8 representations for file permissions. | 在编程中,你可能会遇到文件权限的八进制表示。 |
反义词
十进制 | 十进制系统在日常数学中被广泛使用。 | ||
二进制 | 二进制代码对计算机编程至关重要。 |
例句
1.Master the stack to achieve a decimal number converted to octal number of operation.
掌握利用栈实现十进制数转换成八进制数的运算。
2.Master the stack to achieve a decimal number converted to octal number of operation.
掌握利用栈实现十进制数转换成八进制数的运算。
3.Permissions set in this way use up to four octal digits.
按这种方法设置的权限使用高达4位八进制数字。
4.Use Table 2 as a handy reference for octal permissions.
使用表2作为一个方便的八进制权限参考。
5.Function to return the octal value of a number.
函数返回某个数字的八进制值。
6.Octal: Mathematical system with a base of 8.
八进制:以8为基数的数学制度。
7.Octal Mathematical system with a base of 8.
以8为基数的数学制度。
基数8(八进制)。
9.In programming, the number '10' in octal 八进制 is equivalent to '8' in decimal.
在编程中,数字 '10' 在八进制 octal 中相当于十进制的 '8'。
10.When working with file permissions in Unix, you often see octal 八进制 notation like '755'.
在Unix中处理文件权限时,您经常会看到类似 '755' 的八进制 octal 表示法。
11.To convert a binary number to octal 八进制, group the binary digits in sets of three.
要将二进制数转换为八进制 octal,请将二进制数字分为三位一组。
12.The octal 八进制 system uses digits from 0 to 7.
八进制 octal 系统使用从 0 到 7 的数字。
13.In many programming languages, you can denote an octal 八进制 number by prefixing it with a '0'.
在许多编程语言中,您可以通过在数字前加 '0' 来表示八进制 octal 数字。
作文
In the realm of computer science and mathematics, various numeral systems are utilized to represent numbers. One such system is the octal system, which is base eight. This means that it uses eight different digits to represent values, specifically the digits 0 through 7. Understanding the octal system is crucial for those who work with computers, as it provides a more compact representation of binary numbers, which are the foundation of computer operations. The octal system simplifies the representation of binary data. Each digit in the octal system corresponds to three binary digits or bits. For instance, the binary number 101110 can be grouped into three bits, resulting in 010 111 0. When converted to octal, this binary number becomes 276. This conversion process highlights the efficiency of using the octal system, especially when dealing with large binary numbers, as it reduces the length of the representation significantly. Moreover, the octal system has historical significance in computing. It was commonly used in early computer programming and operating systems. For example, the Unix file permission system utilizes octal notation to define access rights for files and directories. Each permission level—read, write, and execute—is represented by a digit in the octal format, which allows for a concise way to set permissions. The use of octal in this context illustrates its practical application in real-world scenarios, making it an essential concept in the field of computer science. Additionally, the octal system can be beneficial for programmers who need to manipulate binary data. It allows for easier visualization and understanding of binary values, as humans find it challenging to interpret long strings of zeros and ones. By converting binary values into octal, programmers can quickly grasp the underlying data structure without getting overwhelmed by complexity. In education, teaching the octal system can enhance students' comprehension of numerical bases. It encourages logical thinking and problem-solving skills, as students learn to convert between different numeral systems, including decimal, binary, and octal. Through exercises that involve converting numbers from one base to another, students develop a deeper understanding of how numbers function in various contexts. In conclusion, the octal system is a vital component of computer science and mathematics. Its base-eight structure offers a more efficient way to represent binary numbers, simplifying complex data manipulation tasks. The historical significance of octal in programming, particularly in Unix systems, showcases its practical applications. Furthermore, teaching the octal system fosters critical thinking and enhances students' mathematical skills. As technology continues to evolve, the relevance of the octal system remains significant, making it an essential topic for anyone interested in the fields of computing and mathematics.
在计算机科学和数学的领域中,各种数字系统被用来表示数字。其中一个系统是八进制系统,它是以八为基数。这意味着它使用八个不同的数字来表示值,具体是数字0到7。理解八进制系统对那些从事计算机工作的人来说至关重要,因为它提供了一种更紧凑的二进制数字表示方式,而二进制数字是计算机操作的基础。 八进制系统简化了二进制数据的表示。八进制系统中的每个数字对应于三个二进制数字或位。例如,二进制数字101110可以分组为三位,结果为010 111 0。当转换为八进制时,这个二进制数字变成276。这一转换过程突显了使用八进制系统的效率,特别是在处理大型二进制数字时,因为它显著减少了表示的长度。 此外,八进制系统在计算中具有历史意义。它曾在早期计算机编程和操作系统中广泛使用。例如,Unix文件权限系统利用八进制表示法定义文件和目录的访问权限。每个权限级别——读取、写入和执行——都由八进制格式中的一个数字表示,这允许以简洁的方式设置权限。在这个上下文中使用八进制说明了它在现实场景中的实际应用,使其成为计算机科学领域的一个重要概念。 此外,八进制系统对需要操纵二进制数据的程序员也有益。它使得二进制值的可视化和理解变得更容易,因为人类很难解释长串的零和一。通过将二进制值转换为八进制,程序员可以快速掌握底层数据结构,而不会被复杂性所压倒。 在教育中,教授八进制系统可以增强学生对数字基数的理解。它鼓励逻辑思维和解决问题的能力,因为学生学习在不同的数字系统之间进行转换,包括十进制、二进制和八进制。通过涉及将数字从一个基数转换到另一个基数的练习,学生能够更深入地理解数字在各种上下文中的功能。 总之,八进制系统是计算机科学和数学的重要组成部分。它的八进制结构提供了一种更有效的方式来表示二进制数字,从而简化复杂的数据操作任务。八进制在编程中的历史意义,尤其是在Unix系统中的应用,展示了它的实际应用。此外,教学八进制系统促进批判性思维并增强学生的数学技能。随着技术的不断发展,八进制系统的相关性仍然显著,使其成为任何对计算和数学领域感兴趣的人必不可少的话题。
文章标题:octal的意思是什么
文章链接:https://www.liuxue886.cn/danci/430626.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论