octant
简明释义
n. [航][水运] 八分仪;[数] 八分圆;成45°视角的位置
英英释义
单词用法
在第一象限 | |
球体的八分之一 | |
八分之一坐标系统 | |
八分之一划分 |
同义词
反义词
象限 | 这个圆被分成了四个象限。 | ||
半 | We only need to consider half of the data for this analysis. | 我们只需要考虑这次分析的一半数据。 |
例句
1.A data re-presentation for computer implementation of octant encoding is given.
给出八分体编码在计算机中实现时的数据表示法。
2.A data re-presentation for computer implementation of octant encoding is given.
给出八分体编码在计算机中实现时的数据表示法。
3.The generalization of the quadrant and octant to arbitrary number of dimensions is the orthant.
将四象限和八象限推广到任意维数是正交的。
4.The ship's navigator used an octant to measure the angle of the sun above the horizon.
船的导航员使用一个八分仪来测量太阳在地平线上的角度。
5.In geometry class, we learned about the octant, which divides three-dimensional space into eight parts.
在几何课上,我们学习了八分体,它将三维空间分为八个部分。
6.The old sailing manual provided instructions on how to properly use an octant for celestial navigation.
这本旧航海手册提供了关于如何正确使用八分仪进行天文导航的说明。
7.Each octant in the coordinate system represents a different combination of positive and negative values.
坐标系统中的每个八分体代表正负值的不同组合。
8.To find the exact position, the sailor adjusted the octant based on the stars' positions.
为了找到确切的位置,水手根据星星的位置调整了八分仪。
作文
In the realm of mathematics and geometry, the concept of an octant (八分之一) plays a significant role, especially when discussing three-dimensional space. An octant is essentially one of the eight divisions of a three-dimensional coordinate system, much like how a quadrant divides a two-dimensional plane into four sections. Understanding octants is crucial for various applications in fields such as physics, engineering, and computer graphics, where spatial orientation and positioning are vital. To visualize an octant, imagine a three-dimensional Cartesian coordinate system defined by the x, y, and z axes. The point where these axes intersect is called the origin, and from this point, the space is divided into eight distinct regions. Each octant is determined by the signs of the coordinates (positive or negative) in relation to the origin. For instance, the first octant is where all coordinates are positive (x > 0, y > 0, z > 0), while the second octant has a negative x-coordinate and positive y and z coordinates (x < 0, y > 0, z > 0). This division into octants allows for easier navigation and understanding of three-dimensional space. When plotting points or visualizing vectors, knowing which octant a point resides in can provide immediate insight into its position relative to the origin. For example, if an engineer is designing a structure that extends into different octants, they must consider how each section interacts with the others, especially concerning forces and loads. Moreover, the concept of octants extends beyond pure mathematics into practical applications. In computer graphics, for instance, 3D models are often rendered by breaking down the scene into manageable sections defined by octants. This method enhances rendering efficiency and ensures accurate representation of objects in a virtual environment. By understanding which octant an object occupies, programmers can optimize rendering algorithms and improve performance. In addition to technical fields, the idea of octants can also be metaphorically applied to various aspects of life. Just as a three-dimensional space can be divided into octants, our lives can be viewed as segmented into different areas, such as personal, professional, social, and spiritual. Each 'octant' of our life can influence the others, and understanding this interconnectedness can lead to a more balanced and fulfilling existence. In conclusion, the term octant (八分之一) is not just a mathematical concept; it embodies a framework for understanding complex systems, whether in geometry, engineering, computer science, or even personal development. By grasping the significance of octants, we gain valuable insights into the organization and interaction of various elements within a given space. This understanding can empower us to make informed decisions and create more effective solutions in our professional and personal lives.
在数学和几何的领域中,octant(八分之一)这一概念起着重要的作用,特别是在讨论三维空间时。octant 本质上是三维坐标系统的八个部分之一,就像象限将二维平面划分为四个部分一样。理解octants 对于物理、工程和计算机图形学等多个领域非常重要,这些领域中空间方向和定位至关重要。 要想象一个octant,可以想象一个由 x、y 和 z 轴定义的三维笛卡尔坐标系。这些轴相交的点称为原点,从这个点开始,空间被划分为八个不同的区域。每个octant都是通过坐标相对于原点的符号(正或负)来确定的。例如,第一个octant 是所有坐标都为正的地方(x > 0,y > 0,z > 0),而第二个octant 则具有负的 x 坐标和正的 y 和 z 坐标(x < 0,y > 0,z > 0)。 这种划分使得在三维空间中更容易进行导航和理解。当绘制点或可视化向量时,知道一个点位于哪个octant 可以立即提供关于其相对于原点位置的洞察。例如,如果一名工程师正在设计一个延伸到不同octants的结构,他们必须考虑每个部分之间的相互作用,特别是关于力和载荷的影响。 此外,octants 的概念不仅限于纯数学,还扩展到实际应用中。例如,在计算机图形学中,3D 模型通常通过将场景分解为由octants定义的可管理部分来进行渲染。这种方法提高了渲染效率,并确保虚拟环境中对象的准确表示。通过了解一个对象占据哪个octant,程序员可以优化渲染算法,提高性能。 除了技术领域,octants 的理念也可以隐喻性地应用于生活的各个方面。就像三维空间可以划分为octants一样,我们的生活也可以被视为分成不同的领域,比如个人、职业、社交和精神。我们生活中的每个“八分之一”都可以影响其他部分,理解这种相互联系可以导致更平衡和充实的生活。 总之,术语octant(八分之一)不仅仅是一个数学概念;它体现了理解复杂系统的框架,无论是在几何、工程、计算机科学还是个人发展中。通过掌握octants的重要性,我们可以获得关于给定空间内各种元素组织和相互作用的宝贵见解。这种理解可以使我们能够做出明智的决策,并在专业和个人生活中创造更有效的解决方案。
文章标题:octant的意思是什么
文章链接:https://www.liuxue886.cn/danci/430636.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论