ommatidial
简明释义
个眼的
[昆] 小眼的
英英释义
Relating to or denoting the ommatidia, which are the individual visual units found in compound eyes of arthropods. | 与复眼中的单个视觉单位(称为小眼)相关或表示的。 |
单词用法
复眼细胞 | |
复眼单元 | |
复眼视觉 | |
复眼阵列 | |
在复眼视觉中 | |
一种复眼 |
同义词
反义词
简单的 | The simple structure of the eye allows for straightforward vision. | 眼睛的简单结构使得视觉变得直接。 | |
单眼的 | Monocular vision provides a different perspective compared to ommatidial vision. | 与复眼视觉相比,单眼视觉提供了不同的视角。 |
例句
1.The ommatidial surface ultrastructure of ommateum of 6 butterfly species were observed with scanning electronic microscope.
利用扫描电子显微镜观察了6种蝶复眼小眼面的表面结构。
2.The ommatidial surface ultrastructure of ommateum of 6 butterfly species were observed with scanning electronic microscope.
利用扫描电子显微镜观察了6种蝶复眼小眼面的表面结构。
3.The study focused on the structure of the insect eye, particularly the ommatidial 复眼的 arrangement.
这项研究集中在昆虫眼睛的结构上,特别是ommatidial 复眼的排列。
4.Researchers examined the ommatidial 复眼的 facets to understand how insects perceive motion.
研究人员检查了ommatidial 复眼的小面,以了解昆虫如何感知运动。
5.Each ommatidial 复眼的 unit contributes to the overall visual field of the insect.
每个ommatidial 复眼的单元都有助于昆虫整体的视野。
6.The ommatidial 复眼的 structure allows for a wide field of view in many arthropods.
对于许多节肢动物来说,ommatidial 复眼的结构允许有广阔的视野。
7.Insects have evolved various ommatidial 复眼的 configurations to adapt to their environments.
昆虫已经进化出各种ommatidial 复眼的配置以适应它们的环境。
作文
In the fascinating world of biology, the study of animal anatomy reveals a myriad of adaptations that help species survive in their respective environments. One particularly intriguing feature is found in the compound eyes of certain insects, such as flies and bees. These eyes are made up of numerous individual units called ommatidia, each functioning as a separate photoreceptive unit. The term ommatidial refers to anything related to these ommatidia, which play a crucial role in how these insects perceive the world around them. The structure of an ommatidium is quite complex. Each unit consists of a lens, a crystalline cone, and a set of photoreceptor cells. Together, these components allow the insect to detect light and movement with remarkable precision. The arrangement of ommatidial units in the compound eye provides a wide field of vision, enabling insects to spot predators and prey effectively. This adaptation is particularly advantageous in environments where quick reflexes are essential for survival. Interestingly, the number of ommatidial units varies significantly among different insect species. For instance, the common housefly has about 4,000 ommatidia, while the dragonfly boasts an impressive 30,000. This variation influences not only the visual acuity of the insect but also its ability to navigate through complex environments. The more ommatidia an insect has, the better it can detect motion and changes in light, which is vital for hunting and avoiding danger. Research into the ommatidial structure has provided insights into the evolution of vision in arthropods. Scientists have discovered that the arrangement and functionality of these units have adapted over millions of years, allowing insects to thrive in diverse habitats. For example, some nocturnal insects possess ommatidial adaptations that enhance their ability to see in low light conditions, while others have developed specialized units that can detect ultraviolet light, a spectrum invisible to humans. The study of ommatidial structures extends beyond mere curiosity; it has practical applications in fields such as robotics and optical engineering. By mimicking the design of compound eyes, engineers are developing advanced cameras and sensors that can capture images in ways that traditional lenses cannot. These innovations could lead to significant advancements in areas ranging from surveillance technology to medical imaging. Moreover, understanding the ommatidial systems of insects can also inform conservation efforts. As habitats change due to climate change and human activity, the visual capabilities of insects may be impacted, affecting their survival rates. By studying how these creatures adapt their ommatidial structures to their environments, researchers can better predict the effects of environmental changes on insect populations. In conclusion, the term ommatidial encapsulates a fascinating aspect of insect physiology that has far-reaching implications for our understanding of biology, technology, and conservation. The intricate design of ommatidia not only highlights the incredible adaptability of life on Earth but also inspires innovation in various scientific fields. As we continue to explore the complexities of nature, the study of ommatidial structures will undoubtedly reveal more secrets about the remarkable ways in which organisms interact with their environments and evolve over time.
在生物学的迷人世界中,动物解剖学的研究揭示了许多适应性特征,帮助物种在各自的环境中生存。一个特别引人入胜的特征出现在某些昆虫的复眼中,例如苍蝇和蜜蜂。这些眼睛由许多个独立的单元组成,称为ommatidia,每个单元作为一个独立的光感受单元发挥作用。术语ommatidial指与这些ommatidia相关的任何事物,这在这些昆虫感知周围世界的过程中起着至关重要的作用。 一个ommatidium的结构相当复杂。每个单元由一个透镜、一个晶体锥和一组光感受器细胞组成。这些组件共同使昆虫能够以惊人的精确度检测光线和运动。ommatidial单元在复眼中的排列提供了广阔的视野,使昆虫能够有效地发现捕食者和猎物。这种适应性在需要快速反应以求生存的环境中尤其有利。 有趣的是,不同昆虫物种的ommatidial单元数量差异显著。例如,普通家蝇大约有4000个ommatidia,而蜻蜓则拥有令人印象深刻的30000个。这种差异不仅影响昆虫的视觉敏锐度,还影响其在复杂环境中的导航能力。昆虫的ommatidia越多,它就越能检测运动和光线变化,这对捕猎和避免危险至关重要。 对ommatidial结构的研究提供了关于节肢动物视觉进化的见解。科学家们发现,这些单元的排列和功能在数百万年中不断适应,使昆虫能够在不同栖息地中繁荣。例如,一些夜行性昆虫具有增强其在低光条件下视觉能力的ommatidial适应,而另一些则发展出能够检测紫外光的特化单元,这是人类无法看到的光谱。 对ommatidial结构的研究不仅出于好奇,还有实际应用于机器人技术和光学工程等领域。通过模仿复眼的设计,工程师们正在开发先进的相机和传感器,能够以传统镜头无法做到的方式捕捉图像。这些创新可能会导致从监控技术到医学成像等多个领域的重大进展。 此外,理解昆虫的ommatidial系统也可以为保护工作提供信息。随着栖息地因气候变化和人类活动而发生变化,昆虫的视觉能力可能会受到影响,从而影响其生存率。通过研究这些生物如何将其ommatidial结构适应其环境,研究人员可以更好地预测环境变化对昆虫种群的影响。 总之,术语ommatidial概括了昆虫生理学的一个迷人方面,这对于我们理解生物学、技术和保护有着深远的影响。ommatidia的复杂设计不仅突显了地球生命的惊人适应性,还激发了各个科学领域的创新。随着我们继续探索自然的复杂性,对ommatidial结构的研究无疑将揭示更多关于生物如何与其环境互动和随时间演变的非凡方式的秘密。
文章标题:ommatidial的意思是什么
文章链接:https://www.liuxue886.cn/danci/431576.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论