operon
简明释义
n. [遗] 操纵子
英英释义
单词用法
乳糖操纵子 | |
色氨酸操纵子 | |
诱导型操纵子 | |
抑制型操纵子 | |
在操纵子中的基因调控 | |
操纵子的转录 | |
操纵子结构 | |
操纵子的功能 |
同义词
反义词
单顺反子 | Monocistronic mRNA carries information for a single protein. | 单顺反子mRNA携带一个蛋白质的信息。 | |
独立基因 | Independent genes are regulated separately and do not function as an operon. | 独立基因是单独调控的,不作为操纵子功能。 |
例句
1.How long would it take for the E. coli RNA polymerase to synthesize the primary transcript for the E. coli genes encoding the enzymes for lactose metabolism (the 5,300 base pair lac operon)?
一般认为大肠杆菌rna聚合酶合成大肠杆菌编码乳糖代谢酶(5300 bp的乳糖操纵子)的基因的第一次转录要多长时间?
2.How long would it take for the E. coli RNA polymerase to synthesize the primary transcript for the E. coli genes encoding the enzymes for lactose metabolism (the 5,300 base pair lac operon)?
一般认为大肠杆菌rna聚合酶合成大肠杆菌编码乳糖代谢酶(5300 bp的乳糖操纵子)的基因的第一次转录要多长时间?
3.Objective To clone and express the Tip operon gene of E. coli and increase the enzyme activity of expressed product.
目的克隆并表达大肠杆菌色氨酸操纵子基因,提高其酶活性。
4.The operon predictor on our web server and the provided database are easy to access and use.
我们网络服务器上的操纵子预测器及提供的数据库能够容易地访问和使用。
5.Operon containing genes coding for the synthesis of tryptophan.
含有编码色氨酸合成酶基因的操纵子。
6.Operon containing genes that metabolize the sugar arabinose.
含有阿拉伯糖代谢基因的操纵子。
7.The network analysis was used to lac operon system.
利用网络分析法对乳糖操纵子系统进行分析。
8.The lac operon is a well-studied example of gene regulation in bacteria.
乳糖操纵子是细菌基因调控的一个研究得很透彻的例子。
9.In the presence of glucose, the expression of the galactose operon is repressed.
在葡萄糖存在的情况下,半乳糖操纵子的表达受到抑制。
10.Researchers are investigating how mutations in the trp operon affect tryptophan synthesis.
研究人员正在调查trp操纵子中的突变如何影响色氨酸合成。
11.The arabinose operon allows E. coli to utilize arabinose as a carbon source.
阿拉伯糖操纵子使大肠杆菌能够将阿拉伯糖作为碳源利用。
12.Understanding the function of the SOS operon is crucial for studying DNA repair mechanisms.
理解SOS操纵子的功能对于研究DNA修复机制至关重要。
作文
In the field of molecular biology, the concept of an operon is fundamental to understanding how genes are regulated. An operon is a cluster of genes that are transcribed together under the control of a single promoter. This means that when the promoter is activated, all the genes in the operon are expressed simultaneously. This mechanism is particularly prevalent in prokaryotic organisms, such as bacteria, where efficiency in gene regulation is crucial for survival in varying environments. One of the most studied examples of an operon is the lac operon in Escherichia coli. The lac operon is responsible for the metabolism of lactose, a sugar found in milk. When lactose is present in the environment, it binds to the repressor protein that normally inhibits the operon, allowing RNA polymerase to transcribe the genes necessary for lactose utilization. This example illustrates how the operon system allows bacteria to adapt quickly to changes in their nutrient availability. The regulation of an operon can be influenced by various factors, including the presence of specific substrates or environmental signals. For instance, in the case of the trp operon, which is involved in tryptophan biosynthesis, the presence of tryptophan itself acts as a corepressor. When tryptophan levels are high, it binds to the repressor, enabling it to attach to the operator region of the operon and inhibit transcription. This feedback mechanism ensures that the cell does not waste resources producing tryptophan when it is already abundant. Understanding operons has significant implications in biotechnology and genetic engineering. By manipulating operons, scientists can design bacteria that produce useful substances, such as insulin or biofuels, more efficiently. For example, researchers can create synthetic operons that allow bacteria to express multiple genes needed for a specific biosynthetic pathway, streamlining the production process. Moreover, the study of operons contributes to our understanding of evolutionary biology. The existence of operons suggests that gene clustering may provide selective advantages by coordinating the expression of functionally related genes. This organization can lead to more efficient responses to environmental changes, which is essential for survival. In conclusion, the operon is a critical unit of gene regulation that exemplifies the complexity and efficiency of genetic control in prokaryotes. Its study not only enhances our understanding of fundamental biological processes but also opens up pathways for innovative applications in medicine and industry. As research continues, the insights gained from operons will undoubtedly lead to further advancements in our ability to manipulate genetic systems for beneficial purposes.
在分子生物学领域,操纵子的概念对于理解基因如何调控至关重要。操纵子是一组在单一启动子控制下共同转录的基因。这意味着当启动子被激活时,所有在操纵子中的基因会同时表达。这种机制在原核生物(如细菌)中尤其常见,因为在不断变化的环境中,基因调控的高效性对生存至关重要。 最著名的一个操纵子的例子是大肠杆菌中的乳糖操纵子。乳糖操纵子负责乳糖的代谢,乳糖是一种存在于牛奶中的糖。当环境中存在乳糖时,它会与通常抑制操纵子的抑制蛋白结合,从而允许RNA聚合酶转录必要的乳糖利用基因。这个例子说明了操纵子系统如何使细菌能够快速适应营养物质的变化。 操纵子的调控可以受到多种因素的影响,包括特定底物或环境信号的存在。例如,在色氨酸操纵子的情况下,它参与色氨酸的生物合成,色氨酸本身的存在充当共抑制剂。当色氨酸水平较高时,它会与抑制蛋白结合,使其能够附着在操纵子的操纵子区域并抑制转录。这种反馈机制确保细胞在色氨酸已经丰富时,不会浪费资源生产色氨酸。 理解操纵子在生物技术和基因工程中具有重要意义。通过操纵操纵子,科学家可以设计出更高效地生产有用物质(如胰岛素或生物燃料)的细菌。例如,研究人员可以创建合成操纵子,使细菌表达特定生物合成途径所需的多个基因,从而简化生产过程。 此外,操纵子的研究有助于我们理解进化生物学。操纵子的存在表明,基因聚集可能通过协调功能相关基因的表达提供选择优势。这种组织可以导致对环境变化的更有效反应,这对生存至关重要。 总之,操纵子是基因调控的关键单元,展示了原核生物遗传控制的复杂性和高效性。它的研究不仅增强了我们对基本生物过程的理解,还为医学和工业中的创新应用开辟了途径。随着研究的不断深入,从操纵子中获得的见解无疑将进一步推动我们操纵遗传系统以实现有益目的的能力。
文章标题:operon的意思是什么
文章链接:https://www.liuxue886.cn/danci/432068.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论