ordinate
简明释义
n. 纵坐标
v. 授某人以圣职;命令(ordain 的另一不常用形式)
英英释义
单词用法
纵坐标轴 | |
纵坐标值 | |
绘制纵坐标 | |
纵坐标和横坐标 |
同义词
反义词
横坐标 | 横坐标表示图表上的水平位置。 | ||
无序 | 在一个混乱的系统中,缺乏秩序或横坐标。 |
例句
1.How do businesses co-ordinate the flow of material from suppliers to factories to customers?
企业如何协调物资流从供应商到工厂再到顾客的过程?
2.Earnest editorials often call for international talking shops to co-ordinate global demand.
为了协调全球性的需求,热心的社论文章经常呼吁国际间要多沟通[2]。
3.They also sent delegates to co-ordinate policy (building a road, say) with farmers in other valleys.
他们也派遣代表团去和其它山谷的农民协调政策(例如修建道路)。
4.The market structure is too fragmented for banks to co-ordinate their activities easily.
因为它的市场结构实在太过分散,导致投资银行没有办法轻易地协同活动。
5.Member states co-ordinate policy collectively, but there are minimal sanctions for delinquents.
成员国集团协调政策,集体,但对违法者的制裁极其轻微。
6.She thinks the industry has begun to co-ordinate better, but wants more to be done.
她认为整个行业已经开始更好的配合,但是要做的还有很多。
7.They will not find it easy to co-ordinate their efforts, even in the short term.
他们很快就会发现,即使是短期内协调彼此的努力方向也会是一件不容易的事。
8.In a Cartesian coordinate system, the vertical axis is called the ordinate (纵坐标).
在笛卡尔坐标系中,垂直轴称为ordinate(纵坐标)。
9.To plot a point on the graph, you need to know both the ordinate (纵坐标) and the abscissa.
要在图上绘制一个点,你需要知道ordinate(纵坐标)和横坐标。
10.The ordinate (纵坐标) can help determine the height of an object in a two-dimensional space.
在二维空间中,ordinate(纵坐标)可以帮助确定物体的高度。
11.When analyzing data, the ordinate (纵坐标) represents the dependent variable.
在分析数据时,ordinate(纵坐标)表示因变量。
12.In the equation of a line, the ordinate (纵坐标) is calculated based on the slope and the x-coordinate.
在线的方程中,ordinate(纵坐标)是根据斜率和x坐标计算得出的。
作文
In mathematics, particularly in the context of Cartesian coordinates, the term ordinate refers to the second element in an ordered pair that defines a point's location on a two-dimensional plane. When we talk about coordinates, we often refer to them in the form (x, y), where 'x' is known as the abscissa and 'y' is the ordinate. The ordinate represents the vertical position of a point relative to the horizontal axis, which is crucial for graphing functions and understanding geometric relationships. For example, consider the simple linear equation y = 2x + 1. To graph this equation, one would calculate various ordinates for different values of 'x'. If we choose x = 0, then y (the ordinate) equals 1, giving us the point (0, 1) on the graph. If we choose x = 1, then y equals 3, resulting in the point (1, 3). By plotting these points and connecting them, we can visualize the linear relationship defined by the equation. Understanding ordinates is essential not only in mathematics but also in fields such as physics and engineering, where precise measurements and spatial reasoning are required. For instance, in physics, when analyzing motion, the position of an object at any given time can be represented using coordinates, where the ordinate indicates the height or depth of the object in relation to a reference point. Moreover, the concept of ordinate extends beyond just two-dimensional graphs. In three-dimensional space, coordinates are represented as (x, y, z), where 'z' can be considered an additional ordinate representing the depth or elevation of a point. This is particularly important in fields such as computer graphics, where three-dimensional models are created, and understanding the position of points in space is vital for rendering images accurately. In summary, the ordinate plays a fundamental role in mathematics and various applied sciences. It allows us to describe the position of points in a structured way, facilitating analysis and comprehension of complex relationships. Whether we are graphing a simple line or modeling intricate three-dimensional structures, the concept of ordinate remains a cornerstone of our understanding of spatial dimensions. By mastering the use of ordinate, we enhance our ability to navigate and interpret the world around us, making it an invaluable concept in both academic and practical applications.
在数学中,特别是在笛卡尔坐标系的上下文中,术语ordinate指的是定义点在二维平面上位置的有序对中的第二个元素。当我们谈论坐标时,我们通常以(x, y)的形式来表示,其中'x'被称为横坐标,而'y'是ordinate。ordinate表示相对于水平轴的点的垂直位置,这对于绘制函数图形和理解几何关系至关重要。 例如,考虑简单的线性方程y = 2x + 1。要绘制这个方程的图形,需要为不同的'x'计算各种ordinates。如果我们选择x = 0,那么y(即ordinate)等于1,从而得到图上的点(0, 1)。如果我们选择x = 1,那么y等于3,结果是点(1, 3)。通过绘制这些点并将它们连接起来,我们可以可视化由该方程定义的线性关系。 理解ordinates不仅在数学中是必不可少的,在物理学和工程等领域也是如此,这些领域需要精确的测量和空间推理。例如,在物理学中,当分析运动时,任何给定时间物体的位置可以用坐标表示,其中ordinate指示物体相对于参考点的高度或深度。 此外,ordinate的概念超越了二维图形。在三维空间中,坐标表示为(x, y, z),其中'z'可以被视为表示点的深度或高度的额外ordinate。这在计算机图形学等领域尤为重要,在这些领域中,创建三维模型时,理解空间中点的位置对于准确渲染图像至关重要。 总之,ordinate在数学和各种应用科学中发挥着基础性作用。它使我们能够以结构化的方式描述点的位置,从而促进对复杂关系的分析和理解。无论我们是在绘制简单的直线还是建模复杂的三维结构,ordinate的概念始终是我们理解空间维度的基石。通过掌握ordinate的使用,我们增强了导航和解释周围世界的能力,使其在学术和实际应用中成为一个不可或缺的概念。
文章标题:ordinate的意思是什么
文章链接:https://www.liuxue886.cn/danci/432610.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论