orthogonally
简明释义
正交地
直交地
正投影地
英英释义
In a manner that is at right angles to something; perpendicular. | 以与某物成直角的方式;垂直。 |
In a way that is independent or unrelated to other factors or dimensions. | 以独立或与其他因素或维度无关的方式。 |
单词用法
正交相关 | |
正交定向 | |
正交投影 | |
正交独立 | |
正交补 | |
正交交叉 |
同义词
垂直地 | 这两条线垂直相交。 | ||
独立地 | The variables in this experiment are considered to act independently. | 在这个实验中,变量被认为是独立作用的。 | |
成直角 | 这两个向量彼此成直角。 |
反义词
同时 | 这些任务可以同时完成,以节省时间。 | ||
平行 | 这两条线是平行的。 |
例句
1.The propagation velocities of the two orthogonally polarised modes in a "polarisation-maintaining" fiber are changed when exposed to external fields resulting in phase difference.
保偏光纤中两正交偏振模受外场作用,其传播速度发生变化,形成相位差。
2.The propagation velocities of the two orthogonally polarised modes in a "polarisation-maintaining" fiber are changed when exposed to external fields resulting in phase difference.
保偏光纤中两正交偏振模受外场作用,其传播速度发生变化,形成相位差。
3.Propagation properties of two orthogonally polarized Gaussian optical beams through Kerr law nonlinear self focusing and DE focusing conical graded index rods are investigated.
研究两正交偏振高斯光束经克尔非线性自聚焦和发散锥型梯度折射率棒的传播特性。
4.The first liquid crystal layer and the second liquid crystal layer can be orthogonally aligned to achieve polarization insensitive operation of the auto-focus camera.
第一液晶层和第二液晶层可以被正交对准以实现该自动聚焦拍摄装置的偏振不敏感操作。
5.In this paper the factor analysis method is presented to transform orthogonally the optimal subspace, which is obtained from partial least squares regression.
本文提出采用因素分析方法,对偏最小二乘回归的最优子空间进行正交变换。
6.This paper describes a method to generate body-fitted grids, intersecting orthogonally boundary. In this method, Poisson equations are control equations.
本文提出了一种边界正交曲线网格的生成方法。
7.Stress analysis of orthogonally intersecting cylindrical shells usually used in the underground structure is studied in this paper.
本文研究地下结构中常用的正交圆柱形岔壳的内力计算。
8.A research of the effect of rainfall on orthogonally polarized LMDS with line-of-sight transmission has been completed.
研究了降雨对视距传输的LMDS正交极化产生的影响。
9.A method and apparatus for decoding an orthogonally encoded data signal in a noncoherent receiver system.
非相干接收系统中对正交编码数据信号进行解码的方法及装置。
10.The two vectors are independent and can be considered as acting orthogonally 正交地 in the vector space.
这两个向量是独立的,可以被认为在向量空间中<正交地>作用。
11.In a Cartesian coordinate system, the x and y axes are orthogonally 正交地 aligned.
在笛卡尔坐标系统中,x轴和y轴是<正交地>对齐的。
12.The design required that the beams intersect orthogonally 正交地 to ensure structural integrity.
设计要求梁以<正交地>方式相交,以确保结构的完整性。
13.In data analysis, the variables should be measured orthogonally 正交地 to avoid multicollinearity.
在数据分析中,变量应该<正交地>测量,以避免多重共线性。
14.The two functions are defined orthogonally 正交地 over the interval, making them suitable for Fourier analysis.
这两个函数在区间上<正交地>定义,使它们适合傅里叶分析。
作文
In the realm of mathematics and engineering, the term orthogonally plays a crucial role in understanding relationships between different elements. At its core, orthogonally refers to the concept of perpendicularity, where two lines or vectors meet at a right angle. This principle not only applies to geometry but also extends into various fields such as physics, computer science, and data analysis. To illustrate this concept, consider the Cartesian coordinate system, which is foundational in both mathematics and engineering. In this system, the x-axis and y-axis are defined orthogonally to each other, allowing for a clear and structured way to represent points in a two-dimensional space. Each point can be described by its coordinates (x, y), where the x value indicates its position along the horizontal axis, and the y value indicates its position along the vertical axis. The orthogonal nature of these axes simplifies calculations and visualizations, making it easier to understand complex relationships. In computer science, the notion of orthogonally extends to programming languages and software design. For instance, when designing a software system, components that function orthogonally are independent of one another. This means that changes made to one component do not affect others, allowing for greater flexibility and maintainability. Such design principles are vital in creating robust systems that can adapt to changing requirements without introducing errors or complications. Furthermore, in the field of data analysis, the concept of orthogonally is essential when considering different variables in a dataset. When variables are orthogonal, they do not correlate with each other, providing unique information. This independence allows analysts to isolate the effects of individual variables, leading to more accurate models and predictions. For example, in regression analysis, ensuring that predictor variables are orthogonal helps in determining their individual contributions to the outcome variable without interference from multicollinearity. The importance of orthogonally cannot be overstated, as it underpins many fundamental concepts across various disciplines. In physics, the idea of forces acting orthogonally allows scientists to break down complex interactions into simpler components, facilitating problem-solving and analysis. For example, when analyzing the motion of an object under the influence of multiple forces, it is often useful to resolve these forces into their orthogonal components along the x and y axes. This approach simplifies calculations and enhances understanding of the object's trajectory. Moreover, the application of orthogonally is not limited to theoretical frameworks; it also has practical implications in our daily lives. Understanding how different aspects of a project or task can operate orthogonally can lead to more efficient workflows. For instance, in project management, teams can work on different tasks orthogonally without stepping on each other's toes, promoting collaboration while minimizing conflicts. This approach fosters a more productive environment where creativity and innovation can flourish. In conclusion, the term orthogonally encapsulates a powerful concept that transcends various fields of study. Whether in mathematics, computer science, physics, or everyday life, the ability to recognize and apply orthogonally independent elements leads to clearer understanding, improved designs, and more effective problem-solving strategies. As we continue to explore and innovate within these disciplines, embracing the principles of orthogonally will undoubtedly pave the way for new discoveries and advancements.
在数学和工程的领域中,术语orthogonally(正交地)在理解不同元素之间的关系时起着至关重要的作用。其核心概念是垂直性,即两条线或向量在一个直角处相交。这个原理不仅适用于几何学,还延伸到物理学、计算机科学和数据分析等多个领域。 为了说明这一概念,我们考虑笛卡尔坐标系,它是数学和工程的基础。在该系统中,x轴和y轴被定义为orthogonally(正交地)相互垂直,从而为在二维空间中表示点提供了一种清晰而结构化的方法。每个点都可以通过其坐标(x, y)来描述,其中x值表示其在水平轴上的位置,y值表示其在垂直轴上的位置。这些轴的orthogonal(正交)特性简化了计算和可视化,使得理解复杂关系变得更加容易。 在计算机科学中,orthogonally(正交地)的概念扩展到了编程语言和软件设计。例如,在设计软件系统时,功能orthogonally(正交地)的组件彼此独立。这意味着对一个组件所做的更改不会影响其他组件,从而允许更大的灵活性和可维护性。这种设计原则对于创建能够适应不断变化需求的强大系统至关重要,而不会引入错误或复杂性。 此外,在数据分析领域,orthogonally(正交地)的概念在考虑数据集中不同变量时至关重要。当变量是orthogonal(正交的)时,它们之间没有相关性,提供了独特的信息。这种独立性使分析师能够隔离单个变量的影响,从而导致更准确的模型和预测。例如,在回归分析中,确保预测变量是orthogonal(正交的)有助于确定它们对结果变量的个别贡献,而不受多重共线性的干扰。 Orthogonally(正交地)的重要性不容小觑,因为它支撑着各个学科的许多基本概念。在物理学中,力以orthogonally(正交地)作用的思想使科学家能够将复杂的相互作用分解为更简单的组成部分,从而促进问题解决和分析。例如,在分析一个物体在多种力量影响下的运动时,通常有必要将这些力量分解为沿x轴和y轴的orthogonal(正交)分量。这种方法简化了计算,并增强了对物体轨迹的理解。 此外,orthogonally(正交地)的应用不仅限于理论框架;它在我们日常生活中也具有实际意义。理解项目或任务的不同方面如何orthogonally(正交地)运作可以导致更高效的工作流程。例如,在项目管理中,团队可以在不同任务上orthogonally(正交地)工作,而不会互相干扰,从而促进合作,同时最小化冲突。这种方法营造了一个更具生产力的环境,使创造力和创新得以蓬勃发展。 总之,术语orthogonally(正交地)概括了一个强大的概念,超越了各个研究领域。无论是在数学、计算机科学、物理学还是日常生活中,识别和应用orthogonally(正交地)独立元素的能力都能带来更清晰的理解、更好的设计和更有效的问题解决策略。随着我们继续探索和创新这些学科,拥抱orthogonally(正交地)原则无疑将为新的发现和进步铺平道路。
文章标题:orthogonally的意思是什么
文章链接:https://www.liuxue886.cn/danci/433015.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论