orthotropic
简明释义
英[ˌɔːθəʊˈtrɒpɪk]美[ˌɔrθəˈtrɑpɪk]
adj. [植] 直生的,正交的;支架桥面合一的(指一种桥设计,支架结构同时也是桥面或路面)
英英释义
Referring to a material that has different properties in different directions, typically used in the context of composite materials or biological tissues. | 指一种在不同方向上具有不同特性的材料,通常用于复合材料或生物组织的上下文中。 |
单词用法
正交各向异性分析 | |
正交各向异性板 | |
正交各向异性弹性 | |
工程中的正交各向异性材料 | |
建模正交各向异性行为 | |
测试正交各向异性特性 |
同义词
反义词
各向同性的 | Isotropic materials have the same properties in all directions. | 各向同性材料在所有方向上具有相同的性质。 | |
各向异性的 | Anisotropic materials exhibit different properties along different directions. | 各向异性材料在不同方向上表现出不同的性质。 |
例句
1.The elastic-plastic stress and displacement fields of cylindrically orthotropic composite thick-walled tube under uniform radial pressure are studied.
研究了在均匀径向压力作用下圆柱正交异性复合厚壁圆筒的弹-塑性应力场和位移场。
2.An orthotropic equivalent uniaxial stress-strain constitutive model of concrete is used.
采用了等效单轴应力应变混凝土本构模式。
3.The proposed algorithm is used to identify the material parameters of orthotropic plate with a circular hole.
然后采用本文提出的方法识别正交各向异性圆孔方板的材料参数。
4.The temperature fields for an orthotropic plate with a central crack under the remote uniform heat flows are investigated.
研究了含中心裂纹的正交各向异性板,在远场均匀热流作用下温度场的分布。
5.The three-dimensional state equation was derived for a cylindrically orthotropic piezoelectric body with radial polarization.
推导得到轴向极化的圆柱型正交各向异性压电弹性力学的三维状态方程。
6.In this paper, the strength, stiffness and buckling of large FRP conducting wind channel in cooling tower are analyzed using orthotropic shell theory.
用正交各向异性壳体理论,对大型逆流式冷却塔的玻璃钢导风筒进行了强度、刚度和稳定性分析。
7.The engineer designed the bridge using orthotropic materials to enhance its load-bearing capacity.
工程师使用正交各向异性材料设计了这座桥,以增强其承载能力。
8.In the study of composite materials, orthotropic properties are crucial for predicting performance.
在复合材料的研究中,正交各向异性特性对预测性能至关重要。
9.The aircraft wings were constructed with orthotropic panels to reduce weight while maintaining strength.
飞机的机翼采用正交各向异性面板构造,以减轻重量同时保持强度。
10.Understanding the orthotropic behavior of wood can improve construction techniques.
理解木材的正交各向异性行为可以改善建筑技术。
11.The use of orthotropic plates in civil engineering helps optimize material usage.
在土木工程中使用正交各向异性板材有助于优化材料使用。
作文
In the realm of materials science and engineering, understanding the properties of different materials is crucial for various applications. One term that often arises in this field is orthotropic, which refers to a material that has three mutually perpendicular planes of symmetry, each exhibiting different mechanical properties. This concept is particularly important in the study of composite materials, wood, and certain types of metals. Orthotropic materials behave differently when subjected to stress or strain along different axes, making it essential for engineers to consider these properties when designing structures or components. For instance, wood is a classic example of an orthotropic material. It has distinct mechanical properties along its length (longitudinal direction), across its width (radial direction), and through its thickness (tangential direction). The strength and stiffness of wood vary significantly depending on the direction of the applied load. When designing wooden structures, architects and engineers must take into account these anisotropic characteristics to ensure safety and durability. Failure to do so could lead to catastrophic results, such as structural failure or excessive deformation under load. In addition to wood, many composite materials are also orthotropic. Composites are engineered materials made from two or more constituent materials with significantly different physical or chemical properties. These materials are designed to achieve superior performance compared to their individual components. For example, fiberglass is a common composite that consists of glass fibers embedded in a resin matrix. The resulting material exhibits orthotropic behavior, where the strength and stiffness can be tailored by adjusting the orientation and arrangement of the fibers. This ability to customize the properties of composites makes them highly desirable in industries such as aerospace, automotive, and civil engineering. Understanding the orthotropic nature of materials allows engineers to make informed decisions regarding material selection and structural design. Finite element analysis (FEA) is a powerful tool used to simulate and analyze the behavior of orthotropic materials under various loading conditions. By incorporating the unique properties of these materials into simulations, engineers can predict how structures will perform in real-world scenarios, leading to safer and more efficient designs. Moreover, the study of orthotropic materials extends beyond traditional engineering applications. In the field of biomechanics, researchers examine the orthotropic properties of biological tissues, such as tendons and ligaments. These tissues exhibit directional dependence in their mechanical behavior, which is critical for understanding injury mechanisms and developing effective treatment strategies. By studying the orthotropic nature of these tissues, scientists can improve surgical techniques and design better prosthetics and implants. In conclusion, the concept of orthotropic materials plays a vital role in various fields, from civil engineering to biomechanics. Recognizing the unique mechanical properties associated with orthotropic behavior enables engineers and scientists to design safer, more efficient structures and devices. As technology advances, the understanding of orthotropic materials will continue to evolve, leading to innovative solutions and improved performance across multiple disciplines.
在材料科学和工程领域,理解不同材料的特性对于各种应用至关重要。一个经常出现的术语是正交各向异性,它指的是一种材料在三个互相垂直的对称平面上表现出不同的机械性质。这一概念在复合材料、木材和某些金属的研究中尤为重要。正交各向异性材料在不同轴向施加应力或应变时表现出不同的行为,因此工程师在设计结构或组件时必须考虑这些特性。 例如,木材就是一个经典的正交各向异性材料示例。它在纵向(长度方向)、径向(宽度方向)和切向(厚度方向)上的机械性能显著不同。木材的强度和刚度因施加载荷的方向而异。在设计木结构时,建筑师和工程师必须考虑这些各向异性的特性,以确保安全和耐久性。如果不这样做,可能会导致灾难性的结果,例如结构失效或在载荷下过度变形。 除了木材,许多复合材料也是正交各向异性的。复合材料是由两种或多种具有显著不同物理或化学性质的成分材料制成的工程材料。这些材料旨在实现比单独成分更优越的性能。例如,玻璃纤维是一种常见的复合材料,由嵌入树脂基体中的玻璃纤维组成。所得到的材料表现出正交各向异性行为,其中强度和刚度可以通过调整纤维的方向和排列来定制。这种定制复合材料特性的能力使其在航空航天、汽车和土木工程等行业中备受青睐。 理解材料的正交各向异性特性使工程师能够就材料选择和结构设计做出明智的决策。有限元分析(FEA)是一种强大的工具,用于模拟和分析在各种加载条件下的正交各向异性材料的行为。通过将这些材料的独特属性纳入模拟,工程师可以预测结构在现实世界场景下的表现,从而导致更安全和更高效的设计。 此外,对正交各向异性材料的研究超越了传统的工程应用。在生物力学领域,研究人员考察生物组织(如肌腱和韧带)的正交各向异性特性。这些组织在机械行为上表现出方向依赖性,这对理解损伤机制和制定有效的治疗策略至关重要。通过研究这些组织的正交各向异性特性,科学家可以改进外科手术技术并设计更好的假肢和植入物。 总之,正交各向异性材料的概念在多个领域发挥着重要作用,从土木工程到生物力学。认识到与正交各向异性行为相关的独特机械特性,使工程师和科学家能够设计出更安全、更高效的结构和设备。随着技术的发展,对正交各向异性材料的理解将继续演变,推动多学科领域的创新解决方案和性能提升。
文章标题:orthotropic的意思是什么
文章链接:https://www.liuxue886.cn/danci/433092.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论