oscillatory
简明释义
adj. 振荡的;振动的;动摇的
英英释义
单词用法
振荡特性 | |
振荡模式 | |
振荡信号 | |
振荡动态 | |
振荡响应 | |
振荡电路 |
同义词
反义词
稳定的 | 温度在一天内保持稳定。 | ||
恒定的 | 汽车的速度是恒定的,使得乘坐非常平稳。 |
例句
1.By using computer to calculate, we find the fluid flush on the curved pipe wall is also oscillatory.
本文还通过计算机计算,得知流体对弯管两侧的冲刷力也是振荡的。
2.Experimental results demonstrate effectiveness of the combination of weighted essentially non-oscillatory schemes and wiener algorithm.
试验结果显示权基本无振荡格式和维纳算法的联合方法的有效性。
3.In the present paper, safe basin appearing in nonlinear oscillatory theory is applied to the study of packaging dynamics.
将非线性振动理论中有关安全盆的定义应用于包装振动系统的动力学研究。
4.The oscillatory current flowing in the coil produces an oscillating magnetic field.
流过线圈的振荡电流产生一个振荡磁场。
5.There are two kinds of vortex type oscillatory flowmeter: vortex flowmeter and vortex precession flowmeter.
基于旋涡流体振荡原理的流量计主要有两种:涡街流量计和旋进旋涡流量计。
6.The motion has an oscillatory nature.
运动具有振动性质。
7.The pendulum exhibits an oscillatory movement as it swings back and forth.
摆锤表现出一种振荡的运动,因为它前后摆动。
8.In electronics, an oscillatory signal is essential for creating radio waves.
在电子学中,振荡信号对于产生无线电波至关重要。
9.The oscillatory behavior of the springs can be observed in this mechanical system.
在这个机械系统中,可以观察到弹簧的振荡行为。
10.In physics, oscillatory motion is often described using sinusoidal functions.
在物理学中,振荡运动通常用正弦函数来描述。
11.The oscillatory nature of the stock market can lead to unpredictable fluctuations.
股市的振荡特性可能导致不可预测的波动。
作文
The concept of oscillatory motion is a fundamental aspect of physics that can be observed in various systems, including pendulums, springs, and even in the behavior of certain types of waves. In essence, oscillatory refers to movements that occur back and forth around a central point or equilibrium position. This phenomenon can be seen in everyday life, such as the swinging of a swing set or the vibration of a guitar string when plucked. Understanding oscillatory motion is crucial for students and professionals alike, as it lays the groundwork for more complex theories in mechanics and wave dynamics. In physics, oscillatory systems are typically described by their amplitude, frequency, and period. Amplitude refers to the maximum extent of the oscillation from the central position, while frequency denotes how often the oscillation occurs within a given time frame. The period is the time taken for one complete cycle of the motion. These characteristics help us analyze and predict the behavior of oscillatory systems under various conditions. For instance, when we examine a mass attached to a spring, we can determine how the mass will move based on the spring's properties and the force applied to it. The principle of oscillatory motion extends beyond simple mechanical systems. In the realm of electronics, for example, alternating current (AC) is a form of oscillatory electrical current that changes direction periodically. This type of current is essential for powering homes and businesses, as it allows for the efficient transmission of electricity over long distances. Understanding the oscillatory nature of AC enables engineers to design better electrical systems that can meet the demands of modern society. Moreover, oscillatory behavior is not limited to physical systems; it can also be observed in biological contexts. For instance, the human heart exhibits oscillatory patterns in its rhythm, which are vital for maintaining proper blood circulation. Any irregularities in this oscillatory pattern can lead to serious health issues, emphasizing the importance of understanding these rhythms in medical science. In conclusion, the term oscillatory encapsulates a wide range of phenomena across different fields of study. From mechanical systems to electrical currents and biological rhythms, the principles of oscillatory motion provide valuable insights into the functioning of the world around us. By grasping the significance of oscillatory behavior, individuals can enhance their understanding of both fundamental concepts in science and their applications in real-world scenarios. As we continue to explore these oscillatory systems, we unlock new possibilities for innovation and discovery in various domains of knowledge.
‘oscillatory’(振荡的)运动的概念是物理学中的一个基本方面,可以在各种系统中观察到,包括摆、弹簧,甚至某些类型的波的行为。实际上,‘oscillatory’(振荡的)指的是围绕中心点或平衡位置来回发生的运动。这种现象可以在日常生活中看到,例如秋千的摆动或拨动吉他弦时的振动。理解‘oscillatory’(振荡的)运动对于学生和专业人士来说至关重要,因为它为更复杂的力学和波动力学理论奠定了基础。 在物理学中,‘oscillatory’(振荡的)系统通常通过其振幅、频率和周期来描述。振幅是指从中心位置到振动的最大范围,而频率表示在给定时间框架内振动发生的频率。周期是完成一次完整循环所需的时间。这些特性帮助我们分析和预测在各种条件下‘oscillatory’(振荡的)系统的行为。例如,当我们检查一个附着在弹簧上的质量时,我们可以根据弹簧的特性和施加的力来确定该质量将如何移动。 ‘oscillatory’(振荡的)运动的原理不仅限于简单的机械系统。在电子领域,例如,交流电(AC)是一种形式的‘oscillatory’(振荡的)电流,周期性地改变方向。这种类型的电流对于为家庭和企业供电至关重要,因为它允许在长距离内高效传输电力。理解交流电的‘oscillatory’(振荡的)特性使工程师能够设计出更好的电气系统,以满足现代社会的需求。 此外,‘oscillatory’(振荡的)行为不仅限于物理系统;它还可以在生物学背景中观察到。例如,人类心脏在其节奏中表现出‘oscillatory’(振荡的)模式,这对于维持正常的血液循环至关重要。任何这种‘oscillatory’(振荡的)模式的不规则性都可能导致严重的健康问题,这强调了在医学科学中理解这些节奏的重要性。 总之,术语‘oscillatory’(振荡的)涵盖了不同研究领域的广泛现象。从机械系统到电流和生物节律,‘oscillatory’(振荡的)运动的原理为我们提供了对周围世界运作的宝贵见解。通过掌握‘oscillatory’(振荡的)行为的重要性,个人可以增强对科学基本概念及其在现实世界场景中应用的理解。随着我们继续探索这些‘oscillatory’(振荡的)系统,我们为各个知识领域的创新和发现打开了新的可能性。
文章标题:oscillatory的意思是什么
文章链接:https://www.liuxue886.cn/danci/433133.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论