osculating
简明释义
英[ˈɒskjʊleɪtɪŋ]美[ˈɑːskjʊleɪtɪŋ]
adj. 密切的
v. 互成密切;有共同特征;吻(osculate 的 ing 形式)
英英释义
单词用法
接触圆 | |
接触平面 | |
接触曲线 | |
在某一点接触 | |
与曲线接触 | |
关于...的接触 |
同义词
亲吻 | 这对情侣在月光下亲吻。 | ||
接触 | 这两条曲线在那个点上相切。 | ||
拥抱 | 他们在公园里被发现亲吻。 |
反义词
排斥 | 这两个磁铁相互排斥。 | ||
分歧 | 他们在这个问题上的看法出现了分歧。 |
例句
1.The osculating component interchanging device has simple structure, is convenient to replace osculating components, and accurately controls the work stroke of the nail ejecting base.
本实用新型具有结构简单,更换吻切组件操作方便,能准确控制推钉座工作行程的特 点。
2.Siol-vegetation system is a syntheses in their course of evolution, they have osculating connection and reciprocity, if one of them is changed one will have same result in another.
土壤-植被系统是土壤和植被在它们形成和演化的过程中形成了一个综合体,两者之间联系密切,相互作用,任何一个因子的变化都会对其它因子产生相应当影响。
3.The osculating value method was used to evaluate the yuba supervision condition of 1999 to 2003.
利用密切值法对市区1999一2003年腐竹监督监测情况进行综合评价。
4.Methods. Data was analyzed with osculating value method.
方法:运用密切值法进行统计分析。
5.Furthermore, the degree of optical purity of pesticides is osculating with the degree of chiral intermediate.
手性药物的光学纯度高低直接和生产该药物的手性中间体的光学纯度密切相关。
6.To verify the application effect of Osculating Value Method on evaluating the water sanitary quality of swimming pools.
目的验证密切值法在游泳池水质卫生状况评价中的应用。
7.The two curves are osculating at this point, meaning they share the same tangent and curvature.
这两条曲线在此点上相切,意味着它们具有相同的切线和曲率。
8.In physics, when two objects are osculating, they are in close contact and moving together.
在物理学中,当两个物体相接触时,它们是紧密接触并共同运动的。
9.The mathematician explained how the function is osculating at the local maximum.
数学家解释了这个函数在局部最大值处是如何相切的。
10.During the simulation, the particles were osculating around a central point.
在模拟过程中,粒子们在一个中心点附近振荡。
11.The concept of osculating circles helps in understanding curvature in differential geometry.
切圆的概念有助于理解微分几何中的曲率。
作文
In the realm of mathematics, particularly in calculus and geometry, the term osculating refers to the concept of a curve touching another curve at a given point, such that they share the same tangent at that point. This idea is essential when studying the properties of curves and their behaviors. For instance, if we consider a circle and a parabola, the point at which they touch can be described as the osculating point. At this point, not only do the two curves intersect, but they also have the same slope, making it a unique point of contact. The significance of osculating in mathematics extends beyond mere definitions; it plays a crucial role in various applications. Engineers and architects often rely on the principles of osculating curves when designing structures that must withstand forces or when creating smooth transitions in roads and pathways. By understanding how curves interact through osculating, they can ensure that their designs are both functional and aesthetically pleasing. Moreover, the concept of osculating can be found in physics as well. In motion dynamics, for example, the trajectory of an object can be analyzed using osculating circles. An osculating circle at a given point on a curve provides insight into the curvature and acceleration of the object at that point. This application highlights how osculating is not just an abstract mathematical idea, but a practical tool used to understand real-world phenomena. Additionally, the beauty of osculating lies in its connection to other mathematical concepts. For instance, the notion of curvature is closely tied to osculating. The curvature of a curve at a point can be defined in terms of the radius of the osculating circle at that point. A smaller radius indicates a sharper curve, while a larger radius suggests a gentler bend. This relationship deepens our understanding of how curves behave and interact. In the field of computer graphics, osculating curves are utilized to create smooth animations and realistic simulations. By calculating the osculating points of various paths, animators can produce fluid movements that mimic real-life motions. This application showcases the versatility of the concept and its importance across different disciplines. In conclusion, the term osculating encapsulates a fundamental idea in mathematics and its applications. Whether it is in engineering, physics, or computer graphics, understanding the nature of osculating curves allows us to appreciate the intricate relationships between different shapes and their behaviors. As we continue to explore the world around us, the concept of osculating serves as a reminder of the beauty and complexity inherent in mathematics and its profound impact on our understanding of reality.
在数学领域,特别是在微积分和几何学中,术语osculating指的是曲线在给定点上与另一条曲线接触的概念,使得它们在该点具有相同的切线。这个想法在研究曲线的性质及其行为时至关重要。例如,如果我们考虑一条圆和一条抛物线,它们接触的点可以被描述为osculating点。在这个点上,这两条曲线不仅相交,而且还具有相同的斜率,使其成为一个独特的接触点。 osculating在数学中的重要性超越了单纯的定义;它在各种应用中发挥着关键作用。工程师和建筑师在设计必须承受力量的结构或创建道路和路径的平滑过渡时,常常依赖于osculating曲线的原理。通过理解曲线如何通过osculating相互作用,他们可以确保他们的设计既功能性又美观。 此外,osculating的概念在物理学中也可以找到。例如,在运动动力学中,可以使用osculating圆来分析物体的轨迹。在曲线的给定点上的osculating圆提供了该点上物体的曲率和加速度的洞见。这一应用突显了osculating不仅仅是一个抽象的数学概念,而是一个用来理解现实世界现象的实用工具。 此外,osculating的美在于它与其他数学概念的联系。例如,曲率的概念与osculating密切相关。曲线在某一点的曲率可以通过该点的osculating圆的半径来定义。较小的半径表示更尖锐的曲线,而较大的半径则表明弯曲较缓。这种关系加深了我们对曲线如何行为和相互作用的理解。 在计算机图形学领域,osculating曲线被用于创建平滑的动画和逼真的模拟。通过计算各种路径的osculating点,动画师可以产生模仿现实生活动作的流畅运动。这一应用展示了这一概念的多功能性及其在不同学科中的重要性。 总之,术语osculating概括了数学及其应用中的一个基本思想。无论是在工程、物理还是计算机图形学中,理解osculating曲线的性质使我们能够欣赏不同形状及其行为之间的复杂关系。当我们继续探索周围的世界时,osculating的概念提醒我们数学固有的美丽和复杂性,以及它对我们理解现实的深远影响。
文章标题:osculating的意思是什么
文章链接:https://www.liuxue886.cn/danci/433151.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论