osculation
简明释义
英[ˌɒskjʊˈleɪʃən]美[ˌɑːskjəˈleɪʃn]
n. 密切;接吻;接触
英英释义
单词用法
曲线的切触 | |
切触点 | |
两个函数的切触 | |
两个圆之间的切触 |
同义词
吻 | 这对情侣在星空下分享了一个甜蜜的吻。 | ||
接触 | 这两个圆的接触发生在一个点上。 | ||
触摸 | 她感受到他手轻柔的触摸在她的肩膀上。 |
反义词
分离 | The separation of the two groups was necessary for effective communication. | 这两个小组的分离对于有效沟通是必要的。 | |
分歧 | There was a noticeable divergence in their opinions on the matter. | 在这个问题上,他们的意见明显存在分歧。 |
例句
1.Osculation value method is a good method to evaluate the quality of the public place sanitation because its principle is clear and results acquired from the method are accurate and reliable.
结论 :密切值法原理清晰 ,结构严谨 ,结论可靠 ,是一种综合评价公共场所卫生状况的好方法。
2.Osculation value method is a good method to evaluate the quality of the public place sanitation because its principle is clear and results acquired from the method are accurate and reliable.
结论 :密切值法原理清晰 ,结构严谨 ,结论可靠 ,是一种综合评价公共场所卫生状况的好方法。
3.The internal fixation using dotting-osculation plate for tibia comminuted fracture with tiny skin incision.
点式接触钢板治疗胫骨粉碎性骨折。
4.The concept of band osculation is presented by analyzing surface contact types.
通过对曲面接触类型分析,提出了带状密切的概念。
5.In geometry, the point of osculation is where two curves touch each other at a single point.
在几何学中,osculation 指两个曲线在一个点上相互接触的地方。
6.The concept of osculation is important in calculus when analyzing the behavior of functions.
在微积分中,osculation 的概念对于分析函数的行为非常重要。
7.During the study of differential equations, we often encounter osculation between solutions.
在微分方程的研究中,我们常常遇到解之间的 osculation。
8.The osculation of the two graphs indicates they have a common tangent at that point.
这两条图形的 osculation 表明它们在该点有一个公共切线。
9.In physics, the osculation of orbits can help predict the motion of celestial bodies.
在物理学中,轨道的 osculation 可以帮助预测天体的运动。
作文
In the realm of mathematics, particularly in geometry and calculus, the term osculation refers to the act of touching or intersecting at a point. This concept is not just limited to abstract mathematical theories; it has practical applications in various fields such as physics, engineering, and even biology. The idea of osculation can be visualized through the interaction of curves and surfaces, where one curve may closely approximate another at a specific point. For instance, when studying the motion of planets, scientists often examine how their orbits osculate with each other, providing insights into gravitational influences and orbital mechanics. Beyond the confines of mathematics, osculation also finds its place in the study of differential geometry. Here, it describes the relationship between a curve and its tangent line at a given point. The tangent line can be thought of as the best linear approximation of the curve at that point. When two curves osculate, they share a common tangent, which means they not only touch but also have similar directional behavior at that intersection. This concept is crucial in understanding the curvature and behavior of different geometric shapes. Moreover, osculation extends into the world of physics, particularly in the study of waves and oscillations. When analyzing sound waves, for example, the points of maximum amplitude can be considered as areas where the waves osculate with one another, creating constructive interference. This phenomenon is essential in acoustics, where the quality of sound is affected by how waves interact with each other. In engineering, the principle of osculation is applied in the design of machinery and structures. When designing gears, for instance, engineers must ensure that the gear teeth osculate correctly to transmit motion efficiently without slipping. This requires precise calculations and an understanding of the geometric properties of the gears involved. Furthermore, in biology, the concept of osculation can be observed in the way certain organisms interact with their environment. For example, when a bird lands on a branch, the points of contact between the bird's feet and the branch can be seen as instances of osculation. This interaction allows the bird to maintain balance and stability while resting or preparing for flight. In conclusion, the term osculation encompasses a rich tapestry of meanings across various disciplines. Whether in mathematics, physics, engineering, or biology, understanding osculation provides valuable insights into the nature of interactions and relationships between different entities. It reminds us that many phenomena in our world are interconnected, each influencing the other in subtle yet profound ways. As we delve deeper into the study of osculation, we uncover the intricate patterns that govern the universe, enhancing our appreciation for the beauty of mathematics and science.
在数学领域,特别是在几何和微积分中,术语osculation指的是在某一点接触或相交的行为。这个概念不仅限于抽象的数学理论;它在物理、工程甚至生物等多个领域都有实际应用。osculation的思想可以通过曲线和曲面的相互作用来可视化,其中一条曲线可能在特定点上与另一条曲线紧密近似。例如,在研究行星运动时,科学家们经常检查它们的轨道如何彼此osculate,从而提供对引力影响和轨道力学的洞察。 除了数学的范畴,osculation还出现在微分几何的研究中。在这里,它描述了一条曲线与其切线在给定点之间的关系。切线可以被视为该点上曲线的最佳线性近似。当两条曲线osculate时,它们共享一个共同的切线,这意味着它们不仅相互接触,而且在该交点处具有相似的方向行为。这个概念对于理解不同几何形状的曲率和行为至关重要。 此外,osculation延伸到物理学的世界,特别是在波动和振荡的研究中。在分析声波时,例如,最大振幅的点可以被视为波浪相互osculate的区域,从而产生建设性干涉。这种现象在声学中至关重要,声音的质量受到波浪相互作用方式的影响。 在工程领域,osculation原理应用于机器和结构的设计。例如,在设计齿轮时,工程师必须确保齿轮齿正确地osculate以有效地传递运动而不打滑。这需要精确的计算和对涉及齿轮几何特性的理解。 此外,在生物学中,osculation的概念可以在某些生物与其环境互动的方式中观察到。例如,当一只鸟落在树枝上时,鸟的脚与树枝之间的接触点可以视为osculation的实例。这种互动使鸟能够在休息或准备起飞时保持平衡和稳定。 总之,术语osculation在各个学科中包含了丰富的意义。无论是在数学、物理、工程还是生物学中,理解osculation为我们提供了对不同实体之间相互作用和关系的宝贵洞察。它提醒我们,世界上的许多现象是相互关联的,彼此以微妙而深刻的方式影响着对方。当我们深入研究osculation时,我们揭示了支配宇宙的复杂模式,增强了我们对数学和科学之美的欣赏。
文章标题:osculation的意思是什么
文章链接:https://www.liuxue886.cn/danci/433154.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论