pangenesis
简明释义
英[pænˈdʒenɪsɪs]美[pænˈdʒenəsɪs]
n. (英国博物学家达尔文晚年提出的用来说明获得性状能遗传的)[遗] 泛生论
英英释义
单词用法
全源论的理论 | |
遗传学中的全源论 | |
对全源论的支持 | |
对全源论的批评 |
同义词
反义词
例句
1.The then current concept of heredity through pangenesis implied a blending process.
当时流行的泛生说的遗传概念意味着遗传是一个融合的过程。
2.The then current concept of heredity through pangenesis implied a blending process.
当时流行的泛生说的遗传概念意味着遗传是一个融合的过程。
3.The theory of pangenesis suggests that all parts of an organism contribute to the formation of its offspring.
泛生论理论认为,生物的所有部分都对后代的形成有贡献。
4.Darwin proposed pangenesis as a way to explain heredity in his evolutionary theory.
达尔文提出泛生论作为解释其进化理论中遗传的一种方式。
5.In discussions about genetics, pangenesis is often referenced to illustrate early concepts of heredity.
在关于遗传学的讨论中,泛生论常被提及以说明早期的遗传观念。
6.The idea of pangenesis was eventually replaced by more modern theories of genetics.
泛生论的观点最终被更现代的遗传理论所取代。
7.Some scientists criticize pangenesis for lacking empirical evidence.
一些科学家批评泛生论缺乏实证依据。
作文
The concept of pangenesis is one that has sparked considerable debate in the field of biology. Proposed by Charles Darwin in the 19th century, pangenesis suggests that all parts of an organism contribute to the formation of its offspring. According to this theory, every cell in a parent organism emits tiny particles called 'gemmules,' which carry information about the characteristics of that cell. These gemmules are thought to travel through the bloodstream and eventually aggregate in the reproductive organs, influencing the traits of the next generation. 泛生论作为达尔文提出的一个理论,试图解释遗传的机制,但在科学界并未得到广泛认可。 Darwin's idea was revolutionary at the time as it attempted to bridge the gap between inheritance and development. He believed that if every part of an organism could contribute to the genetic makeup of its offspring, then variations could arise from any part of the body. This notion was particularly appealing because it aligned with the observation of how traits seemed to be passed down through generations. However, as science progressed, the understanding of genetics evolved significantly. With the advent of Mendelian genetics, the idea of pangenesis began to lose its credibility. Gregor Mendel's experiments with pea plants demonstrated that traits are inherited in specific patterns, governed by discrete units of heredity known as genes. This contradicted the idea that all parts of an organism contribute equally to the genetic material of the offspring. Instead, Mendelian genetics showed that only certain traits are passed down through dominant and recessive alleles, leading to a more structured understanding of inheritance. Despite its shortcomings, the theory of pangenesis did prompt further investigation into the mechanisms of heredity. It encouraged scientists to explore how traits are transmitted from parents to offspring, paving the way for future discoveries in genetics. The search for the physical basis of heredity continued, culminating in the discovery of DNA as the molecule responsible for genetic information. This marked a significant shift in our understanding of how traits are inherited, moving away from the vague notion of pangenesis to a precise molecular framework. In contemporary discussions of genetics, the relevance of pangenesis may seem limited, yet it serves as a historical stepping stone in the journey of biological understanding. It highlights the evolution of scientific thought and the importance of questioning established ideas. The transition from pangenesis to Mendelian genetics illustrates how science is a dynamic process, continually refining theories based on new evidence. In conclusion, while pangenesis may not hold up under modern scrutiny, it played a crucial role in the development of biological sciences. It reflects the early attempts to explain complex phenomena such as heredity and variation. Understanding the history of concepts like pangenesis allows us to appreciate the advancements in genetics and the ongoing quest for knowledge in the life sciences. As we continue to explore the intricacies of heredity, we must remember the foundational ideas that have shaped our current understanding, even if they have been ultimately superseded by more accurate theories.
‘泛生论’这一概念在生物学领域引发了相当大的争议。它是由查尔斯·达尔文在19世纪提出的,‘泛生论’认为生物体的所有部分都对其后代的形成有所贡献。根据这一理论,父母生物体的每个细胞都会释放一种名为‘种子粒’的小颗粒,这些颗粒携带关于该细胞特征的信息。这些种子粒被认为通过血液循环移动,并最终聚集在生殖器官中,影响下一代的特征。作为达尔文提出的一个理论,‘泛生论’试图解释遗传的机制,但在科学界并未得到广泛认可。 达尔文的观点在当时具有革命性,因为它试图弥合遗传与发育之间的鸿沟。他相信,如果生物体的每一部分都能平等地贡献于后代的基因组成,那么变异就可以源于身体的任何部分。这一观点尤其吸引人,因为它与观察到的特征如何在世代之间传递的现象相一致。然而,随着科学的发展,对遗传学的理解发生了重大变化。 随着孟德尔遗传学的出现,‘泛生论’的可信度开始下降。格雷戈尔·孟德尔对豌豆植物的实验表明,特征以特定模式遗传,由称为基因的离散遗传单位控制。这与所有生物体部分均等贡献于后代遗传物质的观点相矛盾。相反,孟德尔遗传学显示,只有某些特征通过显性和隐性等位基因传递,从而导致对遗传的更结构化理解。 尽管‘泛生论’存在缺陷,但这一理论确实促使人们进一步研究遗传机制。它鼓励科学家探索父母如何将特征传递给后代,为未来在遗传学方面的发现铺平了道路。寻找遗传的物理基础的努力持续进行,最终导致DNA作为负责遗传信息的分子的发现。这标志着我们对特征遗传理解的重大转变,摆脱了模糊的‘泛生论’概念,转向精确的分子框架。 在当代的遗传学讨论中,‘泛生论’的相关性似乎有限,但它作为生物学理解旅程中的历史基石,仍然具有重要意义。它突显了科学思想的演变以及质疑既定观念的重要性。从‘泛生论’到孟德尔遗传学的过渡,说明了科学是一个动态过程,基于新证据不断完善理论。 总之,尽管‘泛生论’在现代审视下可能站不住脚,但它在生物科学的发展中发挥了至关重要的作用。它反映了早期对遗传和变异等复杂现象的解释尝试。理解像‘泛生论’这样的概念的历史,使我们能够欣赏遗传学的进步及生命科学中对知识的持续追求。在我们继续探索遗传的复杂性时,我们必须记住那些塑造我们当前理解的基础理论,即使这些理论最终被更准确的理论所取代。
文章标题:pangenesis的意思是什么
文章链接:https://www.liuxue886.cn/danci/436328.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论