parabolic
简明释义
adj. 抛物线的;比喻的;寓言的
英英释义
单词用法
抛物线;抛物曲线;抛物线型曲线 | |
抛物柱面镜;抛物面反射镜 |
同义词
曲线的 | 抛射物的轨迹是一个曲线轨迹。 | ||
二次的 | The equation of the graph is quadratic, indicating a parabolic shape. | 图形的方程是二次的,表明其为抛物线形状。 | |
弧形的 | The bridge has an arc-like design that resembles a parabola. | 这座桥有一个弧形设计,类似于抛物线。 |
反义词
线性的 | 这两个变量之间的关系是线性的。 | ||
常数的 | In a constant function, the output does not change regardless of the input. | 在常数函数中,输出不会因输入而变化。 |
例句
1.Each parabolic trough focused sunlight onto a tube running along its length, heating the water inside it.
每一块抛物线将阳光聚集在一根沿着玻璃镜槽的管道上,能量被聚集用于加热里面的水,最终产生蒸汽推动连接在泵上的蒸汽机。
2.The second part is the controllability of parabolic equation .
第二部分写的是,抛物方程的能控性。
3.The multiple reciprocity method (MRM) for the parabolic variational inequalities of the second kind was discussed.
本文讨论了第二类抛物型变分不等式中的MRM(多重互易方法)方法。
4.A surface having parabolic sections parallel to a single coordinate axis and elliptic sections perpendicular to that axis.
抛物面一种有与单坐标轴平行的抛物截面和与该轴垂直的椭圆截面的平面。
5.This will be done on a parabolic aircraft flight hopefully before the end of the year.
测试是在一个抛物线飞行的航空器上,希望年底前能完成。
6.Most Balancing Valves are globe style and incorporate a parabolic (plug) shaped disc.
大部分平衡阀采用截止阀结合抛物线(插塞)阀瓣。
7.A huge generator complex with a parabolic emitter dish projected a defensive shield around the second Death Star.
一个带有碟形抛物曲面发射器的巨型发生器在第二颗死星周围产生一个护盾。
8.A convergence estimate and approximation for a kind of parabolic variational inequality is discussed.
本文讨论了一类抛物型变分不等式的近似收敛问题。
9.A move to the right of the parabolic trend line is an exit signal.
运行到抛物线形的趋势线右边是该趋势结束的信号。
10.The satellite dish is designed with a parabolic 抛物线的 shape to focus signals.
卫星天线的设计采用了抛物线的形状以聚焦信号。
11.In physics, the trajectory of a projectile can be modeled as a parabolic 抛物线的 curve.
在物理学中,抛射物的轨迹可以建模为一条抛物线的曲线。
12.The architect used a parabolic 抛物线的 arch design for the bridge to enhance its strength.
建筑师为桥梁使用了抛物线的拱形设计,以增强其强度。
13.A parabolic 抛物线的 reflector can increase the intensity of light in a flashlight.
一个抛物线的反射器可以增加手电筒中光的强度。
14.The equation of a parabolic 抛物线的 function is y = ax² + bx + c.
一个抛物线的函数的方程是 y = ax² + bx + c。
作文
The concept of a parabolic curve is fundamental in various fields, including mathematics, physics, and engineering. A parabolic shape is defined as the graph of a quadratic function, which can be represented by the equation y = ax² + bx + c. This simple yet powerful equation describes a curve that opens either upwards or downwards depending on the value of 'a'. Understanding parabolic shapes is crucial for many practical applications, such as designing satellite dishes, roller coasters, and even the trajectory of projectiles. In mathematics, the parabolic function serves as an essential tool for solving quadratic equations. When plotted on a graph, the vertex of the parabolic curve represents the maximum or minimum point, which can be found using the formula -b/(2a). This vertex is not just a point; it symbolizes the peak of efficiency in various scenarios, such as maximizing profit in a business model or minimizing costs in production. In physics, the parabolic trajectory is observed in the motion of objects under the influence of gravity. For example, when a ball is thrown, its path resembles a parabolic curve. Understanding this trajectory allows engineers to calculate the optimal angle and speed for launching projectiles, whether in sports or aerospace applications. The study of parabolic motion has led to advancements in technology, enabling us to send rockets into space with precision. Furthermore, the parabolic shape is not only limited to theoretical concepts but also extends to real-world applications. In architecture, parabolic arches are used to create strong and aesthetically pleasing structures. These arches distribute weight evenly, making them ideal for bridges and large buildings. The use of parabolic designs in architecture demonstrates how mathematical principles can be applied to enhance both functionality and beauty. In the realm of technology, parabolic reflectors are commonly used in satellite dishes and telescopes. These devices utilize the unique properties of parabolic curves to focus signals or light onto a single point, significantly improving performance. This principle is vital for communication satellites that require precise signal reception and transmission, showcasing the importance of parabolic shapes in modern technology. Moreover, the parabolic design is evident in nature as well. Many plants exhibit parabolic growth patterns, optimizing their exposure to sunlight. For instance, the leaves of certain trees are arranged in a parabolic fashion to capture the maximum amount of light for photosynthesis. This natural occurrence highlights the efficiency of parabolic shapes in promoting growth and sustainability. In conclusion, the term parabolic encompasses a wide range of applications and implications across various disciplines. From mathematics to physics and engineering to nature, understanding parabolic shapes is essential for innovation and problem-solving. As we continue to explore and apply these principles, the significance of parabolic designs will undoubtedly remain a cornerstone of scientific and technological advancement.
抛物线的概念在数学、物理和工程等多个领域中是基础性的。抛物线形状被定义为二次函数的图像,可以用方程y = ax² + bx + c表示。这个简单而强大的方程描述了一条向上或向下打开的曲线,具体取决于'a'的值。理解抛物线形状对许多实际应用至关重要,例如设计卫星天线、过山车甚至是抛射物的轨迹。 在数学中,抛物线函数是解决二次方程的重要工具。当在图表上绘制时,抛物线曲线的顶点代表最大值或最小值,可以使用公式-b/(2a)找到。这个顶点不仅仅是一个点;它象征着各种场景中效率的巅峰,例如在商业模型中最大化利润或在生产中最小化成本。 在物理学中,抛物线轨迹在重力作用下观察到物体的运动。例如,当一个球被投掷时,它的路径类似于抛物线。理解这一轨迹使工程师能够计算发射抛射物的最佳角度和速度,无论是在体育还是航空航天应用中。对抛物线运动的研究推动了技术的发展,使我们能够精确地将火箭送入太空。 此外,抛物线形状不仅限于理论概念,还扩展到现实世界的应用。在建筑学中,抛物线拱门用于创建坚固且美观的结构。这些拱门均匀分配重量,使其非常适合用于桥梁和大型建筑。抛物线设计在建筑中的应用展示了数学原理如何被应用于增强功能性和美感。 在技术领域,抛物线反射器通常用于卫星天线和望远镜。这些设备利用抛物线曲线的独特属性,将信号或光聚焦到一个点上,从而显著提高性能。这个原理对于需要精确信号接收和传输的通信卫星至关重要,展示了抛物线形状在现代技术中的重要性。 此外,抛物线设计在自然界中也很明显。许多植物表现出抛物线生长模式,以优化其阳光暴露。例如,某些树木的叶子以抛物线的方式排列,以捕捉最多的光进行光合作用。这种自然现象突显了抛物线形状在促进生长和可持续性方面的有效性。 总之,抛物线一词涵盖了各个学科中广泛的应用和含义。从数学到物理,从工程到自然,理解抛物线形状对于创新和解决问题至关重要。随着我们继续探索和应用这些原理,抛物线设计的重要性无疑将继续成为科学和技术进步的基石。
文章标题:parabolic的意思是什么
文章链接:https://www.liuxue886.cn/danci/436641.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论