phonons
简明释义
n. [声]声子(phonon 的复数形式)
英英释义
Phonons are quantized modes of vibrations occurring in a rigid structure, such as a crystal lattice, which can carry thermal energy. | 声子是发生在刚性结构(如晶体格子)中的量子化振动模式,可以携带热能。 |
单词用法
光学声子 | |
声学声子 | |
声子色散 | |
声子散射 | |
声子能量 | |
声子相互作用 | |
声子传输 | |
声子限制 |
同义词
反义词
真空 | 太空的真空中没有声子。 | ||
沉默 | 在沉默中,没有声子来传递声音。 |
例句
1.The results for different surfaces show the important effects of surface relaxation and reconstruction on the properties of surface phonons.
不同表面结果的比较显示弛豫及重构对表面声子性质具有决定性的影响。
2.That allows the material to block and reflect back the phonons in the form of heat.
因此,这些材料就可以阻挡以热量形式存在的声子,并将它们反射回去。
3.The phonons swim downstream toward the horizon, their wavelengths decreasing all the while.
声子往下游的视界游去,而它们的波长则一直变短。
4.An abnormal peak has been observed in the Brillouin spectra for some phonons in addition to the three normal peaks.
发现某些声子散射谱中除三个正常峰外还存在一个异常峰。
5.The ability to control phonons could lead to more efficient ways of scavenging phonon-related heat in computers, cell phones and cars to create electricity.
通过对声子进行控制,可以更有效地清除电脑、手机和汽车中与声子相关的热量,并用它们来发电。
6.Of course there are important differences between the phonons in a string of ions and those in an ordinary material.
当然,一串离子中的声子和一般材料中的声子有很重大的区别。
7.The boundary coupling effect leads to physical pictures of phonons different from those in infinite lattice.
只能按空间型将声子分类。数字计算表明共价结构性质的加强可导致出现边界耦合软模。
8.Scientists call the interaction of light with phonons the Raman effect.
科学家将光与声子的交互作用称为拉曼效应。
9.In solid-state physics, the behavior of phonons 声子 can significantly affect the thermal conductivity of materials.
在固态物理中,声子 声子的行为可以显著影响材料的热导率。
10.Researchers studied how phonons 声子 interact with electrons in superconductors.
研究人员研究了声子 声子如何与超导体中的电子相互作用。
11.The concept of phonons 声子 is crucial for understanding lattice vibrations in crystals.
理解晶体中的格子振动时,声子 声子的概念至关重要。
12.In quantum mechanics, phonons 声子 are quantized modes of vibrations in a rigid structure.
在量子力学中,声子 声子是刚性结构中振动的量子化模式。
13.The study of phonons 声子 helps in designing better thermoelectric materials.
对声子 声子的研究有助于设计更好的热电材料。
作文
In the study of condensed matter physics, one of the fundamental concepts is that of phonons, which are quantized modes of vibrations occurring in a rigid structure. These phonons play a crucial role in understanding various physical phenomena, particularly in solid-state physics. To grasp the significance of phonons, it is essential to first recognize that they represent collective excitations in a lattice, which can be visualized as sound waves propagating through a material. Just as sound is transmitted through air in the form of waves, phonons facilitate the transfer of energy and heat in solids. The behavior of phonons is intimately linked to the thermal properties of materials. For instance, the ability of a material to conduct heat is largely dependent on how phonons interact with one another and with other particles in the lattice. In metals, phonons can scatter off impurities or defects, which can impede their flow and thus affect thermal conductivity. Conversely, in insulators, phonons can move more freely, leading to different thermal behaviors. This distinction is vital for applications in thermoelectrics, where materials are designed to efficiently convert temperature differences into electrical energy. Moreover, phonons are not just limited to thermal energy transport; they also play a significant role in various electronic properties of materials. For example, in superconductors, phonons are responsible for the attractive interaction between electrons, which allows them to pair up and flow without resistance. Understanding how phonons interact with electrons is pivotal in the development of new materials with enhanced superconducting properties. The concept of phonons extends beyond just theoretical physics; it has practical implications in technology and engineering. For instance, the field of nanotechnology heavily relies on manipulating phonons to create materials with specific thermal and acoustic properties. Engineers design nanostructures that can either enhance or suppress phonons to achieve desired outcomes, such as improving the efficiency of thermoelectric devices or creating better soundproof materials. In conclusion, phonons are a fundamental aspect of solid-state physics that bridge the gap between thermal and electronic properties of materials. Their ability to convey energy and interact with other particles makes them indispensable in both natural phenomena and technological advancements. As research continues to evolve, our understanding of phonons will undoubtedly lead to innovative applications and materials that can revolutionize various industries. The study of phonons exemplifies the intricate connections within the physical world, showcasing how seemingly simple concepts can have profound implications in science and technology.
在凝聚态物理的研究中,一个基本概念是声子,它是发生在刚性结构中的量子化振动模式。这些声子在理解各种物理现象,特别是在固态物理中,起着至关重要的作用。要掌握声子的重要性,首先需要认识到它们代表了晶格中的集体激发,可以将其视为声波在材料中传播的方式。正如声音通过空气以波的形式传播一样,声子促进了能量和热量在固体中的传递。 声子的行为与材料的热特性密切相关。例如,材料导热的能力在很大程度上取决于声子如何彼此相互作用以及与晶格中的其他粒子的相互作用。在金属中,声子可能会因杂质或缺陷而散射,这可能会阻碍它们的流动,从而影响热导率。相反,在绝缘体中,声子可以更自由地移动,导致不同的热行为。这种区别对于热电材料的应用至关重要,因为这些材料被设计为有效地将温差转化为电能。 此外,声子不仅限于热能传输;它们在材料的各种电子特性中也发挥着重要作用。例如,在超导体中,声子负责电子之间的吸引相互作用,使它们能够成对并无阻力地流动。理解声子与电子之间的相互作用对于开发具有增强超导特性的材料至关重要。 声子的概念不仅限于理论物理;它在技术和工程中具有实际意义。例如,纳米技术领域在操控声子以创造具有特定热和声学特性的材料方面依赖重重。工程师设计纳米结构,可以增强或抑制声子以实现期望的结果,例如提高热电设备的效率或创造更好的隔音材料。 总之,声子是固态物理的一个基本方面,它连接了材料的热和电子特性。它们传递能量和与其他粒子相互作用的能力使它们在自然现象和技术进步中不可或缺。随着研究的不断发展,我们对声子的理解无疑将导致创新的应用和材料,这些材料可以改变各个行业。对声子的研究展示了物理世界内复杂的联系,展示了看似简单的概念如何在科学和技术中产生深远的影响。
文章标题:phonons的意思是什么
文章链接:https://www.liuxue886.cn/danci/442172.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论