photocathode
简明释义
英[fəʊtəʊˈkæθəʊd]美[ˌfoʊtoʊˈkæθˌoʊd]
n. [电子] 光电阴极
英英释义
A photocathode is a type of electrode that emits electrons when it absorbs photons, typically used in devices such as photomultiplier tubes and image sensors. | 光电阴极是一种在吸收光子时发射电子的电极,通常用于光电倍增管和图像传感器等设备中。 |
单词用法
光电阴极材料 | |
光电阴极表面 | |
光电阴极响应 | |
光电阴极设备 | |
高效光电阴极 | |
光发射光电阴极 | |
半导体光电阴极 | |
碱金属光电阴极 |
同义词
光电发射表面 | The photoemissive surface is crucial in the operation of photomultiplier tubes. | 光电发射表面在光电倍增管的工作中至关重要。 | |
光敏阴极 | Light-sensitive cathodes are used in various imaging devices. | 光敏阴极被广泛应用于各种成像设备中。 |
反义词
光阳极 | 光阳极在光电化学电池中至关重要。 | ||
非光电阴极 | Non-photocathodes can be used in applications where light sensitivity is not required. | 非光电阴极可以用于不需要光敏感的应用中。 |
例句
1.The effect of hot cleaning and ion cleaning for photocathode glass substrate on improving the photocathode sensitivity is researched.
论文探索了光阴极玻璃基底的热清洁和离子清洁对提高光阴极灵敏度的影响。
2.The thickness of transmission-mode photocathode affects directly its photoelectric efficiency and spectral response.
透射式光阴极的厚度,直接影响光阴极的光电子发射效率和光谱响应。
3.The closer the measuring reflectance curve to the theoretical reflectance curve, the higher a photocathode sensitivity is.
多碱阴极的实测反射率曲线越接近理论曲线,其灵敏度也越高。
4.In the surface analysis and the manufacture of photocathode the cesium ion source shows some advantages as compared with the neutral cesium source.
在光电阴极的制备及对光电阴极作表面分析中,铯离子源较中性铯源具有一定的优点。
5.With good light collection, about 30 % of the luminescence quanta may reach the photocathode.
在良好的光收集条件下,约30%的荧光量子可以到达光阴极。
6.The gain of the PMT, that is the ratio of anode output current to the photoelectric current from the photocathode, is directly related to the supply voltage.
光电倍增管的增益,是阳极输出电流和光电阴极中光电流的比值,直接关系到电源电压。
7.The design of an rf cavity consisting of 1 1/2 cells for a high -brightness SC photocathode injector is presented.
对高亮度1 1/2超导腔光阴极注入器进行了腔形的概念研究设计。
8.The photocathode is essential in the operation of a photomultiplier tube.
在光电倍增管的工作中,光电阴极是必不可少的。
9.Researchers are developing new materials for more efficient photocathodes.
研究人员正在开发新材料以提高光电阴极的效率。
10.The performance of a photocathode can significantly affect the sensitivity of imaging systems.
一个光电阴极的性能可以显著影响成像系统的灵敏度。
11.In vacuum tubes, the photocathode converts light into electrons.
在真空管中,光电阴极将光转换为电子。
12.The efficiency of a photocathode is measured by its quantum efficiency.
光电阴极的效率通过其量子效率来衡量。
作文
The development of modern technology has been significantly influenced by various components that play crucial roles in the functioning of electronic devices. One such component is the photocathode, which is essential in converting light into electrical signals. The photocathode is a type of electrode that emits electrons when it absorbs photons, making it a vital element in devices like photomultiplier tubes and image sensors. Understanding how a photocathode works can provide insights into its applications and importance in today's technological landscape. A photocathode typically consists of a material that has a low work function, allowing it to release electrons easily when exposed to light. When photons strike the surface of the photocathode, they transfer their energy to the electrons within the material. If the energy of the incoming photons is greater than the work function of the material, the electrons gain enough energy to escape from the surface, resulting in the emission of photoelectrons. This process is known as the photoelectric effect, and it is fundamental to the operation of many optical devices. In practical applications, photocathodes are widely used in scientific instruments such as photomultiplier tubes (PMTs), which are capable of detecting very low levels of light. PMTs utilize the principle of the photocathode to amplify weak light signals. When light enters the PMT, it first strikes the photocathode, causing it to emit electrons. These electrons are then accelerated towards a series of dynodes, where they collide with the material and release even more electrons. This cascade effect results in a significant amplification of the original light signal, allowing for sensitive measurements in fields like medical imaging and particle physics. Another important application of photocathodes is in image sensors used in cameras and other imaging devices. In these sensors, the photocathode converts incoming light into an electrical charge, which is then processed to create images. The efficiency and sensitivity of the photocathode directly impact the quality of the images produced. Advances in materials science have led to the development of new types of photocathodes that offer improved performance, enabling higher resolution and better low-light capabilities in modern cameras. The study of photocathodes also extends to the field of quantum optics, where researchers explore the interactions between light and matter at the quantum level. By understanding the behavior of photocathodes, scientists can design new devices that harness quantum phenomena for applications in quantum computing and secure communication. In conclusion, the photocathode is a key component in many electronic and optical devices, serving as the interface between light and electricity. Its ability to convert photons into electrons underpins the functionality of devices that range from simple cameras to complex scientific instruments. As technology continues to evolve, the role of photocathodes will likely expand, leading to new innovations and applications that leverage their unique properties. Understanding the principles behind the photocathode not only enhances our knowledge of electronic devices but also opens up new avenues for research and development in various fields.
现代技术的发展受到各种组件的显著影响,这些组件在电子设备的功能中发挥着至关重要的作用。其中一个组件就是光电阴极,它在将光转换为电信号的过程中至关重要。光电阴极是一种电极,当它吸收光子时会发射电子,因此在光电倍增管和图像传感器等设备中是一个重要的元素。理解光电阴极的工作原理可以为我们提供对其应用和在当今技术环境中重要性的洞察。 光电阴极通常由一种具有低功函数的材料构成,使其在暴露于光线时能够轻松释放电子。当光子撞击光电阴极的表面时,它们将能量转移给材料中的电子。如果入射光子的能量大于材料的功函数,电子就会获得足够的能量从表面逃逸,从而导致光电子的发射。这个过程被称为光电效应,是许多光学设备操作的基础。 在实际应用中,光电阴极被广泛用于科学仪器,如光电倍增管(PMT),它能够检测非常微弱的光线。PMT利用光电阴极的原理来放大微弱的光信号。当光线进入PMT时,首先撞击光电阴极,导致其发射电子。这些电子随后被加速朝向一系列电极(dynodes),在碰撞材料时释放出更多的电子。这种级联效应导致原始光信号的显著放大,从而使我们能够在医学成像和粒子物理等领域进行敏感测量。 光电阴极的另一个重要应用是在相机和其他成像设备中使用的图像传感器。在这些传感器中,光电阴极将入射光转换为电荷,然后进行处理以创建图像。光电阴极的效率和灵敏度直接影响生成图像的质量。材料科学的进步导致新型光电阴极的发展,提供了更好的性能,使现代相机能够实现更高的分辨率和更好的低光能力。 对光电阴极的研究还扩展到量子光学领域,研究人员探讨光与物质在量子层面的相互作用。通过理解光电阴极的行为,科学家可以设计出利用量子现象的新设备,用于量子计算和安全通信等应用。 总之,光电阴极是许多电子和光学设备中的关键组件,充当光与电之间的接口。其将光子转换为电子的能力支撑着从简单相机到复杂科学仪器的设备的功能。随着技术的不断发展,光电阴极的作用可能会扩大,导致新的创新和应用,利用其独特的特性。理解光电阴极背后的原理不仅增强了我们对电子设备的知识,还为各个领域的研究和开发开辟了新的途径。
文章标题:photocathode的意思是什么
文章链接:https://www.liuxue886.cn/danci/442353.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论