photoexcitation
简明释义
英[/ˌfəʊtəʊɪkˈsaɪteɪʃən/]美[/ˌfoʊtoʊɪkˈseɪʃən/]
n. [物] 光致激发;[物] 光激励
英英释义
Photoexcitation refers to the process in which an electron in a molecule or atom absorbs a photon and is elevated to a higher energy state. | 光激发是指分子或原子中的电子吸收光子并被提升到更高能量状态的过程。 |
单词用法
由光激发引起 | |
由于光激发而产生 | |
材料中的光激发 | |
光激发现象 | |
光激发能量 | |
光激发光谱 | |
光激发动力学 | |
光激发机制 |
同义词
光诱导激发 | Photoinduced excitation occurs when a molecule absorbs light energy. | 光诱导激发发生在分子吸收光能时。 | |
光激发 | Light excitation is a fundamental process in photosynthesis. | 光激发是光合作用中的一个基本过程。 |
反义词
变暗 | The darkening of the environment can reduce the rate of photoexcitation. | 环境的变暗会减少光激发的速率。 | |
去激发 | Deexcitation occurs when an excited electron returns to its ground state. | 去激发发生在激发电子返回其基态时。 |
例句
1.At high photoexcitation, emitted THz wave shows the obvious azimuthal Angle dependence superimposed with a strong angle-independent component.
在高能量雷射的激发之下,放射出的兆赫波显示出与方位角有关的分量叠加于与方位角无关的分量上。
2.At high photoexcitation, emitted THz wave shows the obvious azimuthal Angle dependence superimposed with a strong angle-independent component.
在高能量雷射的激发之下,放射出的兆赫波显示出与方位角有关的分量叠加于与方位角无关的分量上。
3.The process of photoexcitation allows electrons to move to a higher energy state when they absorb light.
当电子吸收光时,光激发过程使其移动到更高的能量状态。
4.In solar cells, photoexcitation is critical for converting sunlight into electricity.
在太阳能电池中,光激发对将阳光转化为电能至关重要。
5.Researchers are studying photoexcitation in molecules to understand their electronic properties better.
研究人员正在研究分子中的光激发以更好地理解其电子特性。
6.The phenomenon of photoexcitation can lead to various chemical reactions in photochemistry.
在光化学中,光激发现象可以引发各种化学反应。
7.By utilizing photoexcitation, scientists can manipulate the behavior of materials at the nanoscale.
通过利用光激发,科学家可以操控纳米尺度材料的行为。
作文
In the realm of modern physics and materials science, the phenomenon of photoexcitation plays a crucial role in understanding how materials interact with light. Photoexcitation refers to the process by which electrons in a material absorb photons and move to a higher energy state. This fundamental concept is essential for various applications, including solar cells, photodetectors, and even biological systems such as photosynthesis. When light strikes a material, it can be absorbed by electrons within the atoms of that material. The energy from the incoming photons is transferred to these electrons, causing them to become excited and jump to a higher energy level. This process is known as photoexcitation, and it is a critical step in many physical and chemical processes. For example, in solar cells, photoexcitation enables the conversion of sunlight into electrical energy, which is harnessed for power generation. The efficiency of photoexcitation depends on several factors, including the wavelength of the incident light, the properties of the material, and the temperature. Different materials have different energy band gaps, which determine the specific wavelengths of light that can be absorbed. For instance, silicon, a common material used in solar cells, has an optimal absorption range that allows it to effectively convert sunlight into electricity through photoexcitation. Moreover, photoexcitation is not limited to artificial materials; it is also a key process in natural systems. In plants, chlorophyll molecules absorb sunlight to undergo photoexcitation, leading to the conversion of solar energy into chemical energy during photosynthesis. This process is vital for life on Earth, as it forms the basis of the food chain and oxygen production. Understanding photoexcitation also opens the door to advancements in technology. Researchers are exploring new materials and methods to enhance the efficiency of photoexcitation in solar cells, aiming to create more sustainable and cost-effective energy solutions. Additionally, developments in quantum dots and other nanomaterials are paving the way for innovative applications in optoelectronics, where photoexcitation can be utilized for improved light-emitting devices and sensors. In conclusion, photoexcitation is a fundamental process that underpins many technological and natural phenomena. Its significance spans from enabling renewable energy solutions to supporting life processes in nature. As research continues to unveil the complexities of photoexcitation, we can expect to see transformative advancements in various fields, ultimately contributing to a more sustainable future. By deepening our understanding of photoexcitation, we can leverage this knowledge to innovate and improve the technologies that shape our world today.
在现代物理学和材料科学领域,光激发现象在理解材料与光的相互作用中起着至关重要的作用。光激发是指材料中的电子吸收光子并移动到更高能级的过程。这个基本概念对于各种应用至关重要,包括太阳能电池、光电探测器甚至生物系统如光合作用。 当光照射到材料上时,它可以被材料原子的电子吸收。来自入射光子的能量被转移到这些电子上,使它们兴奋并跃迁到更高的能级。这个过程被称为光激发,它是许多物理和化学过程中的关键步骤。例如,在太阳能电池中,光激发使阳光转化为电能,从而被用于发电。 光激发的效率取决于多个因素,包括入射光的波长、材料的性质和温度。不同材料具有不同的能带间隙,这决定了可以被吸收的特定光波长。例如,硅是一种常用于太阳能电池的材料,其最佳吸收范围使其能够有效地通过光激发将阳光转化为电力。 此外,光激发不仅限于人工材料;它也是自然系统中的关键过程。在植物中,叶绿素分子吸收阳光以进行光激发,从而在光合作用过程中将太阳能转化为化学能。这个过程对地球上的生命至关重要,因为它构成了食物链和氧气生产的基础。 理解光激发也为技术进步打开了大门。研究人员正在探索新的材料和方法,以提高太阳能电池中光激发的效率,旨在创造更可持续和经济的能源解决方案。此外,量子点和其他纳米材料的发展为光电电子学中的创新应用铺平了道路,在这些应用中,光激发可以用于改善发光设备和传感器。 总之,光激发是支撑许多技术和自然现象的基本过程。它的重要性从促进可再生能源解决方案到支持自然中的生命过程。随着研究不断揭示光激发的复杂性,我们可以期待在各个领域看到变革性的进展,最终为更可持续的未来做出贡献。通过加深对光激发的理解,我们可以利用这一知识来创新和改善塑造我们今天世界的技术。
文章标题:photoexcitation的意思是什么
文章链接:https://www.liuxue886.cn/danci/442455.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论