photon
简明释义
n. [物]光子;辐射量子;见光度(等于 light quantum)
复 数 p h o t o n s
英英释义
单词用法
光子能 | |
光子探测器 |
同义词
反义词
黑暗 | 在黑暗中,我们看不到任何光子。 | ||
物质 | Matter can absorb photons, converting light into other forms of energy. | 物质可以吸收光子,将光转化为其他形式的能量。 |
例句
1.In a linear measurement, each photon would interact separately with the atoms, resulting in a relatively weak signal.
在一个线性测量中,每一个光子可以单独地与原子进行相互作用,这样得到的是一个相对较弱的信号。
2.The energy of a light photon or particle is different for each color.
可见光子或粒子的能量因颜色不同而不同。
3.So it does not mean that we have more energy per photon.
它不代表每一个光子,有更高的能量。
4.So, remember what we're talking about here is the amount of energy that's in each photon.
所以,记住我们这里谈论的是,每个光子的能量值。
5.The first that we need to know the energy of the photon that's incident on our gaseous atom.
首先,我们需要知道,入射到气体原子的光子的能量。
6.In the first, a photon is polarised either vertically or horizontally.
第一种模式中,光子经过偏振处理,转为垂直方向或水平方向振动。
7.The Planck–Einstein relation describes the energy of each photon in terms of the photon's frequency.
普朗克—爱因斯坦关系式用光子的频率来描述每个光子的能量。
8.How can the law accommodate a further output signal, a photon or optical signal?
这定律如何适应进一步输出信号,光子或光信号?
9.To facilitate the measurements, Professor Gross and his team captured the photon in a special box, a resonator.
为了方便测量,格罗斯教授和他的团队通过一个特殊的盒子——谐振器——来捕获光子。
10.A photon is a fundamental particle of light that carries energy.
一个光子是光的基本粒子,携带能量。
11.When a photon strikes a solar panel, it can generate electricity.
当一个光子击中太阳能电池板时,它可以产生电力。
12.In quantum mechanics, a photon can exhibit both wave-like and particle-like properties.
在量子力学中,一个光子可以表现出波动性和粒子性。
13.The speed of a photon in a vacuum is approximately 299,792 kilometers per second.
一个光子在真空中的速度大约为每秒299,792公里。
14.Lasers emit coherent light by stimulating the emission of photons.
激光通过刺激光子的发射来发出相干光。
作文
The concept of a photon (光子) is fundamental in the field of physics, particularly in the study of light and electromagnetic radiation. A photon is defined as a quantum of electromagnetic energy that behaves both like a wave and a particle. This dual nature makes photons unique, as they can exhibit properties of both waves, such as interference and diffraction, and particles, such as momentum and energy transfer. Understanding photons is crucial for various scientific disciplines, including quantum mechanics, optics, and even telecommunications. In everyday life, we encounter photons constantly. When we turn on a light bulb, it emits countless photons that travel through the air and reach our eyes, allowing us to see. The colors we perceive are determined by the energy of the photons emitted by objects. For example, red light consists of photons with lower energy, while blue light is made up of higher-energy photons. This relationship between energy and color is a fundamental aspect of how we understand light. Moreover, photons play a significant role in modern technology. In the realm of telecommunications, fiber optic cables utilize the transmission of photons to carry information over long distances at high speeds. This technology has revolutionized the way we communicate, enabling faster internet connections and clearer phone calls. The ability to manipulate photons has also led to advancements in imaging technologies, such as MRI and CT scans, which rely on the interaction of photons with matter to create detailed images of the human body. In the context of quantum mechanics, the study of photons has opened new avenues for research and innovation. Quantum entanglement, for instance, is a phenomenon where photons become interconnected in such a way that the state of one photon can instantaneously affect the state of another, regardless of the distance separating them. This principle has profound implications for the development of quantum computing and secure communication systems, paving the way for a future where information can be processed and transmitted in ways previously thought impossible. Furthermore, the exploration of photons extends beyond practical applications. Scientists are continually investigating the fundamental properties of photons to unlock the mysteries of the universe. Research into dark matter and dark energy, for example, often involves studying how photons interact with these elusive components of the cosmos. By understanding photons, researchers hope to gain insights into the very fabric of reality and the forces that govern it. In conclusion, the study of photons is not only a cornerstone of physics but also a gateway to numerous technological advancements and scientific discoveries. From enabling our daily experiences with light to pushing the boundaries of quantum mechanics, photons are integral to our understanding of the universe. As we continue to explore their properties and applications, we may uncover even more extraordinary phenomena that challenge our current perceptions of reality. The journey of understanding photons is ongoing, and its implications are vast, promising a future rich with possibilities and innovations that will shape our world for generations to come.
光子(photon)的概念在物理学领域中至关重要,特别是在光和电磁辐射的研究中。光子被定义为电磁能量的量子,它既表现出波动性,又表现出粒子性。这种双重性质使得光子独特,因为它们可以表现出波的特性,例如干涉和衍射,也可以表现出粒子的特性,例如动量和能量转移。理解光子对包括量子力学、光学甚至电信在内的各种科学学科至关重要。 在日常生活中,我们不断接触到光子。当我们打开灯泡时,它会发出无数光子,这些光子穿过空气到达我们的眼睛,让我们能够看见。我们所感知的颜色由物体发出的光子的能量决定。例如,红光由能量较低的光子组成,而蓝光则由能量较高的光子组成。能量与颜色之间的这种关系是我们理解光的基本方面。 此外,光子在现代技术中也发挥着重要作用。在电信领域,光纤电缆利用光子的传输以高速远距离传递信息。这项技术彻底改变了我们的沟通方式,使互联网连接更快,电话通话更清晰。操控光子的能力也促进了成像技术的进步,例如MRI和CT扫描,这些技术依赖于光子与物质的相互作用来创建人体的详细图像。 在量子力学的背景下,光子的研究开辟了新的研究和创新途径。例如,量子纠缠是一个现象,其中光子以一种方式相互关联,使得一个光子的状态可以瞬时影响另一个光子的状态,无论它们之间的距离有多远。这一原理对量子计算和安全通信系统的发展具有深远的影响,为未来的信息可以以前所未有的方式处理和传输铺平了道路。 此外,对光子的探索超越了实际应用。科学家们不断研究光子的基本属性,以揭示宇宙的奥秘。例如,暗物质和暗能量的研究通常涉及研究光子如何与这些难以捉摸的宇宙成分相互作用。通过理解光子,研究人员希望获得对现实本质及其支配力量的深入见解。 总之,光子的研究不仅是物理学的基石,也是众多技术进步和科学发现的门户。从使我们日常体验光明到推动量子力学的边界,光子对于我们理解宇宙至关重要。随着我们继续探索它们的特性和应用,我们可能会发现更多非凡的现象,挑战我们当前对现实的认知。理解光子的旅程仍在继续,其影响广泛,承诺着一个充满可能性和创新的未来,将塑造我们几代人的世界。
文章标题:photon的意思是什么
文章链接:https://www.liuxue886.cn/danci/442589.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论