positronium
简明释义
英[ˌpɒzɪˈtrəʊnɪəm]美[ˌpɑzɪˈtroniəm]
n. [高能] 电子偶素;[核] 正电子素
英英释义
A bound state of an electron and its antiparticle, a positron, which is short-lived and decays into gamma rays. | 电子及其反粒子正电子的束缚态,寿命短暂,并衰变为伽马射线。 |
单词用法
正电子氢原子 | |
正电子态 | |
正电子的形成 | |
电子和正电子的束缚态 | |
正电子的寿命 | |
正电子的衰变 |
同义词
反义词
电子 | An electron is a fundamental particle with a negative charge. | 电子是带负电的基本粒子。 | |
原子核 | 原子核包含质子和中子。 |
例句
1.The characteristics of positronium, a kind of exotic atoms, and the applicability of using it to probe the reaction mechanism and the active intermediates are briefly introduced.
介绍了一种奇特原子-正电子素的基本性质及作为探针研究化学反应历程、探测中间产物的实用性。
2.The characteristics of positronium, a kind of exotic atoms, and the applicability of using it to probe the reaction mechanism and the active intermediates are briefly introduced.
介绍了一种奇特原子-正电子素的基本性质及作为探针研究化学反应历程、探测中间产物的实用性。
3.Positronium Time of Flight Spectroscopy (Ps-TOF) represents the properties about the pore size, direction and inner-connection in materials.
正电子素飞行时间谱能够无损地给出材料开孔的尺寸、方向、以及内部连通性等性质。
4.We investigate physicss properties of positronium and the way of positron - electron annihilation.
探讨正电子偶素的物理性质以及正电子—电子对的湮灭方式。
5.The study of positronium is crucial for understanding antimatter.
对正电子氢的研究对于理解反物质至关重要。
6.Scientists have created a stable form of positronium in the lab.
科学家在实验室中创造了一种稳定的正电子氢形式。
7.The lifetime of positronium can vary depending on its environment.
正电子氢的寿命可能会根据其环境而变化。
8.Researchers are exploring the decay mechanisms of positronium to gain insights into particle physics.
研究人员正在探索正电子氢的衰变机制,以深入了解粒子物理学。
9.In positron emission tomography (PET), positronium plays a significant role in image formation.
在正电子发射断层扫描(PET)中,正电子氢在图像形成中发挥着重要作用。
作文
In the realm of particle physics, one of the most fascinating and intriguing entities is the exotic atom known as positronium. This unique system is formed when a positron, which is the antimatter counterpart of an electron, binds with an electron itself. The existence of positronium provides significant insights into the interactions between matter and antimatter, as well as the fundamental forces that govern these interactions. Positronium is not just a theoretical construct; it can be created in laboratory conditions and has been studied extensively since its discovery in the mid-20th century. A notable feature of positronium is its short lifespan, which typically lasts only about 125 picoseconds for the para-positronium state and approximately 142 nanoseconds for the ortho-positronium state. This fleeting existence makes it a challenging subject for study, yet it also makes it an important tool for probing the properties of quantum mechanics and the nature of particles. The structure of positronium resembles that of a hydrogen atom, where the electron and positron orbit around their common center of mass. However, unlike hydrogen, which consists of a proton and an electron, positronium is entirely composed of leptons, making it a purely leptonic system. This distinction allows physicists to explore the dynamics of electromagnetic interactions without the complications introduced by nuclear forces. One of the most exciting aspects of studying positronium is its implications for understanding antimatter. Antimatter is a substance composed of antiparticles, which have the same mass as particles of ordinary matter but opposite charges. The existence of positronium serves as a bridge between the two realms of matter and antimatter, allowing scientists to investigate how they interact and annihilate each other. When a positron encounters an electron, they can annihilate each other, producing gamma rays in the process. This annihilation is a key area of research, as it can help us understand why our universe is predominantly composed of matter rather than antimatter, a question that remains one of the great mysteries in cosmology. Moreover, the study of positronium has practical applications in various fields, including medical imaging techniques such as positron emission tomography (PET). In PET scans, positrons emitted from radioactive substances are used to create detailed images of processes within the body. Understanding the behavior of positronium enhances our ability to interpret the data obtained from these scans, leading to better diagnostic tools and treatments. In conclusion, the study of positronium represents a fascinating intersection of particle physics, cosmology, and practical applications in medicine. By examining this exotic atom, scientists can gain valuable insights into the fundamental nature of matter and antimatter, explore the principles of quantum mechanics, and develop advanced technologies that can improve human health. As research continues to evolve, positronium will undoubtedly remain a key focus in the quest to unravel the mysteries of the universe.
在粒子物理学的领域中,最迷人和引人入胜的实体之一是被称为正电子氢的奇异原子。这种独特的系统是在一个正电子(即电子的反物质对应物)与一个电子结合时形成的。正电子氢的存在提供了对物质与反物质之间相互作用的重大见解,以及支配这些相互作用的基本力。 正电子氢不仅仅是一个理论构造;它可以在实验室条件下创建,并自20世纪中叶以来得到了广泛研究。正电子氢的一个显著特征是其短暂的生命周期,通常在对称正电子氢状态下仅持续大约125皮秒,而在反对称正电子氢状态下大约持续142纳秒。这种短暂的存在使得它成为一个具有挑战性的研究对象,但这也使其成为探测量子力学性质和粒子本质的重要工具。 正电子氢的结构类似于氢原子,其中电子和正电子围绕着它们的共同质心轨道运行。然而,与由一个质子和一个电子组成的氢原子不同,正电子氢完全由轻子组成,使其成为一个纯粹的轻子系统。这一区别使得物理学家能够探索电磁相互作用的动态,而不受核力引入的复杂性。 研究正电子氢的一个令人兴奋的方面是它对理解反物质的影响。反物质是一种由反粒子组成的物质,其质量与普通物质的粒子相同,但电荷相反。正电子氢的存在充当了物质与反物质两个领域之间的桥梁,使科学家能够研究它们如何相互作用并相互湮灭。当正电子遇到电子时,它们可以相互湮灭,产生伽马射线。这种湮灭是研究的关键领域,因为它可以帮助我们理解为什么我们的宇宙主要由物质组成而不是反物质,这个问题仍然是宇宙学中的一个重大谜团。 此外,研究正电子氢在各个领域都有实际应用,包括医学成像技术,如正电子发射断层扫描(PET)。在PET扫描中,来自放射性物质的正电子被用来创建体内过程的详细图像。理解正电子氢的行为增强了我们解释从这些扫描中获得的数据的能力,从而导致更好的诊断工具和治疗方法。 总之,正电子氢的研究代表了粒子物理学、宇宙学和医学实际应用之间的迷人交汇点。通过研究这个奇异的原子,科学家可以获得对物质和反物质的基本性质、探索量子力学原理以及开发可以改善人类健康的先进技术的宝贵见解。随着研究的不断发展,正电子氢无疑将继续成为揭示宇宙奥秘的关键焦点。
文章标题:positronium的意思是什么
文章链接:https://www.liuxue886.cn/danci/447853.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论