radian
简明释义
n. [数]弧度
n. (Radian)人名;(罗)拉迪安
英英释义
A radian is the angle subtended at the center of a circle by an arc whose length is equal to the radius of the circle. | 弧度是指在圆心处由与圆的半径相等的弧所形成的角。 |
单词用法
一个弧度 | |
多个弧度 | |
以弧度测量 | |
弧度测量 | |
弧度圆 | |
弧度转换 |
同义词
反义词
度 | 一个平角有180度。 |
例句
1.ChaPter four stUdies radian imPerilment grade evaluaion problems based onChaptCr three.
在第三章的基础上,第四章讨论了辐射源威胁等级判定问题。
2.Perfect smooth radian, multilayer thin tangent, exquisitely carved, elegant, luxurious and pompous.
完美流畅的弧度,多层细切线,精美的雕花,优雅大方,奢华而不浮夸。
3.Objective: To discuss the influence of Hada yoga exercise on cervical vertebra suffers cervical vertebra physiological radian.
目的:探讨哈达瑜伽锻炼对颈椎病患者颈椎生理弧度的影响。
4.Radian silicone version of which is to do a year before the rise of high-precision technology bronzing version.
其中弧度硅胶版是尽一年才兴起的高精密技术烫金版。
5.The low thermal water radian heating type with modified polypropylene pipe is systematically analyzed.
对以改性聚丙烯管为管材的低温热水辐射采暖方式进行了系统分析。
6.Each vertex in average distance of each radian located in circumference.
各极点互相以均匀地弧度间隔坐落在圆周上。
7.One group of arc-shaped balancing segments with the same length and the same radian is preferred.
一组弧形平衡段同长度、同弧度的平衡段为佳。
8.The radian of the arc-shaped blade can be adjusted through rotating the control screws.
旋转控制螺丝可以调节弧形刀片的弧度。
9.The angle of the wheel's rotation can be measured in radians (弧度) to determine its position.
轮子的旋转角度可以用弧度来测量,以确定其位置。
10.In calculus, the derivative of the sine function is easier to compute when angles are in radians (弧度).
在微积分中,当角度以弧度表示时,正弦函数的导数更容易计算。
11.To convert degrees to radians (弧度), multiply by π/180.
要将度数转换为弧度,请乘以π/180。
12.A full circle is equal to 2π radians (弧度).
一个完整的圆等于2π弧度。
13.When programming graphics, you often need to convert angles from degrees to radians (弧度).
在编程图形时,您通常需要将角度从度数转换为弧度。
作文
Understanding the concept of a radian is essential for anyone studying mathematics, particularly in the fields of trigonometry and calculus. A radian is a unit of angular measure used in many areas of mathematics. It is defined as the angle made at the center of a circle by an arc whose length is equal to the radius of the circle. This definition highlights the relationship between the radius of a circle and its circumference, which is a fundamental aspect of circular motion and geometry. To visualize a radian, consider a circle with a radius of one unit. The circumference of this circle is 2π units. If we take an arc of this circle that is also one unit long, the angle subtended at the center of the circle by this arc is one radian. Therefore, there are approximately 6.283 (or 2π) radians in a full circle, which corresponds to 360 degrees. This equivalence is crucial because it allows us to convert between degrees and radians, facilitating various computations in trigonometry. In practical applications, radians are often preferred over degrees, especially in calculus and physics, because they provide a more natural way to describe angular relationships. For instance, when calculating the derivatives of trigonometric functions, using radians simplifies the process. The derivative of the sine function, for example, is the cosine function only when the angle is measured in radians. This property is significant in many areas of science and engineering, where precise calculations are necessary. Moreover, understanding radians enhances our ability to solve real-world problems involving circular motion. For example, when analyzing the motion of planets or satellites, physicists often use radians to express angles. This practice stems from the fact that many physical formulas, such as those describing angular velocity or centripetal acceleration, rely on radians to maintain consistency in units. In conclusion, mastering the concept of a radian is vital for students and professionals in mathematics and science. The radian not only serves as a bridge between geometry and calculus but also plays a crucial role in understanding and analyzing circular motion. By grasping how to convert between radians and degrees, and recognizing the significance of radians in various mathematical contexts, individuals can enhance their problem-solving skills and deepen their comprehension of the mathematical principles that govern our world. As we continue to explore the intricacies of mathematics, the radian will undoubtedly remain a fundamental concept that supports our understanding of angles and their applications in diverse fields.
理解弧度的概念对任何学习数学的人来说都是至关重要的,特别是在三角学和微积分领域。弧度是许多数学领域中使用的角度测量单位。它被定义为在圆心处由长度等于圆半径的弧所形成的角度。这个定义突出了圆的半径与其周长之间的关系,这是圆周运动和几何的一个基本方面。 为了更好地理解弧度,可以考虑一个半径为一单位的圆。这个圆的周长是2π单位。如果我们取这个圆上一个长度也为一单位的弧,那么这个弧在圆心处所形成的角度就是一个弧度。因此,一个完整的圆大约有6.283(或2π)个弧度,这对应于360度。这种等价性至关重要,因为它允许我们在度数和弧度之间进行转换,从而方便各种三角计算。 在实际应用中,弧度通常比度数更受欢迎,特别是在微积分和物理学中,因为它们提供了描述角度关系的更自然的方法。例如,在计算三角函数的导数时,使用弧度可以简化过程。正弦函数的导数,例如,只有在角度以弧度为单位时才是余弦函数。这一特性在科学和工程的许多领域中都非常重要,那里需要精确的计算。 此外,理解弧度增强了我们解决涉及圆周运动的现实问题的能力。例如,在分析行星或卫星的运动时,物理学家通常使用弧度来表示角度。这一做法源于许多物理公式(如描述角速度或向心加速度的公式)依赖于弧度来保持单位的一致性。 总之,掌握弧度的概念对数学和科学领域的学生和专业人士至关重要。弧度不仅作为几何和微积分之间的桥梁,而且在理解和分析圆周运动方面发挥着关键作用。通过掌握如何在弧度和度数之间进行转换,并认识到弧度在各种数学背景下的重要性,个人可以提高他们的问题解决能力,深化对支配我们世界的数学原理的理解。随着我们继续探索数学的复杂性,弧度无疑将继续作为一个基本概念,支持我们对角度及其在不同领域应用的理解。
文章标题:radian的意思是什么
文章链接:https://www.liuxue886.cn/danci/456977.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论