radiolabel
简明释义
英[ˌraɪdiəʊˈleɪb(ə)l]美[ˌreɪdɪoʊˈleɪbəl]
v. 对………作放射性同位素示踪
n. 放射性同位素标记
复 数 r a d i o l a b e l s
第 三 人 称 单 数 r a d i o l a b e l s
现 在 分 词 r a d i o l a b e l l i n g 或 r a d i o l a b e l i n g
过 去 式 r a d i o l a b e l l e d 或 r a d i o l a b e l e d
过 去 分 词 r a d i o l a b e l l e d 或 r a d i o l a b e l e d
英英释义
To attach a radioactive isotope to a molecule or compound for the purpose of tracking or imaging in biological or chemical research. | 将放射性同位素附加到分子或化合物上,以便在生物或化学研究中进行追踪或成像。 |
单词用法
生物分子的放射性标记 | |
放射性标记示踪剂 | |
使用放射性标记物质 | |
放射性标记实验 | |
放射性标记方案 | |
放射性标记DNA |
同义词
反义词
非放射性标记 | Non-radiolabeled compounds are often used in control experiments. | 非放射性标记化合物常用于对照实验。 | |
未标记 | 未标记样本可以提供比较的基线。 |
例句
1.Researchers often use radiolabel to track the movement of drugs within the body.
研究人员经常使用放射性标记来追踪药物在体内的运动。
2.In cancer studies, scientists radiabel tumor cells to monitor their growth.
在癌症研究中,科学家对肿瘤细胞进行放射性标记以监测其生长。
3.The team decided to radiolabel the antibodies for better imaging results.
团队决定对抗体进行放射性标记以获得更好的成像结果。
4.Using radiolabel techniques, researchers can study metabolic pathways in living organisms.
通过使用放射性标记技术,研究人员可以研究活生物体中的代谢途径。
5.The pharmaceutical company is developing a new method to radiolabel compounds more efficiently.
这家制药公司正在开发一种更高效的方式来放射性标记化合物。
作文
In the field of scientific research, particularly in biochemistry and molecular biology, the technique of using radiolabel (放射性标记) has become an indispensable tool. This method involves attaching a radioactive isotope to a molecule of interest, allowing researchers to track the molecule's movement and interactions within a biological system. The ability to visualize and quantify these processes provides insights that are crucial for understanding complex biological phenomena. One of the primary applications of radiolabel (放射性标记) is in the study of metabolic pathways. By using radiolabeled substrates, scientists can trace how nutrients are metabolized by cells, revealing important information about energy production and utilization. For instance, in a typical experiment, glucose molecules can be labeled with a radioactive carbon isotope. As the cells metabolize this glucose, the emitted radiation can be detected and measured, allowing researchers to determine how efficiently the cells utilize this energy source. Moreover, radiolabel (放射性标记) techniques are vital in drug development. Pharmaceutical companies often use radiolabeled compounds to study the pharmacokinetics of new drugs. By observing how a drug is absorbed, distributed, metabolized, and excreted in the body, researchers can better understand its efficacy and safety. This information is essential for optimizing drug formulations and dosages before they reach clinical trials. In addition to metabolic studies, radiolabel (放射性标记) is also employed in various imaging techniques, such as positron emission tomography (PET) scans. In PET imaging, a radiolabeled tracer is injected into the patient’s body. As the tracer accumulates in specific tissues, it emits positrons that can be detected by the imaging equipment. This allows doctors to visualize metabolic activity in organs and tissues, aiding in the diagnosis of conditions like cancer, cardiovascular diseases, and neurological disorders. However, while the benefits of using radiolabel (放射性标记) are substantial, there are also ethical considerations and safety concerns associated with its use. The handling of radioactive materials requires strict safety protocols to protect researchers and patients from unnecessary exposure. Additionally, the disposal of radiolabeled waste must be managed carefully to prevent environmental contamination. As technology advances, alternative methods such as fluorescent labeling and magnetic resonance imaging (MRI) are being explored as potential substitutes for radiolabel (放射性标记). These techniques offer non-radioactive options for tracking biological processes, but they may not always provide the same level of detail or sensitivity as radiolabeling. In conclusion, the use of radiolabel (放射性标记) in scientific research plays a critical role in advancing our understanding of biological systems and developing new therapeutic strategies. Despite the challenges and risks involved, the insights gained from radiolabeling techniques are invaluable. As we continue to explore the frontiers of science, the integration of radiolabel (放射性标记) methods will likely remain a cornerstone of research in biochemistry, pharmacology, and medical imaging.
在科学研究领域,特别是在生物化学和分子生物学中,使用radiolabel(放射性标记)技术已成为一种不可或缺的工具。这种方法涉及将放射性同位素附加到感兴趣的分子上,从而使研究人员能够追踪该分子在生物系统中的运动和相互作用。能够可视化和量化这些过程提供了对理解复杂生物现象至关重要的见解。 radiolabel(放射性标记)的主要应用之一是在代谢途径的研究中。通过使用放射性标记的底物,科学家可以追踪细胞如何代谢营养物质,从而揭示有关能量产生和利用的重要信息。例如,在典型实验中,葡萄糖分子可以用放射性碳同位素标记。当细胞代谢这种葡萄糖时,释放出的辐射可以被检测和测量,从而使研究人员能够确定细胞利用这一能源的效率。 此外,radiolabel(放射性标记)技术在药物开发中也至关重要。制药公司通常使用放射性标记化合物来研究新药的药代动力学。通过观察药物在体内的吸收、分布、代谢和排泄,研究人员可以更好地了解其有效性和安全性。这些信息对于优化药物配方和剂量至关重要,尤其是在进入临床试验之前。 除了代谢研究,radiolabel(放射性标记)还用于各种成像技术,如正电子发射断层扫描(PET扫描)。在PET成像中,放射性标记的示踪剂被注入患者体内。当示踪剂在特定组织中累积时,它会发出正电子,这些正电子可以被成像设备检测到。这使医生能够可视化器官和组织中的代谢活动,有助于诊断癌症、心血管疾病和神经系统疾病等病症。 然而,尽管使用radiolabel(放射性标记)的好处显著,但与其使用相关的伦理考虑和安全问题也不容忽视。处理放射性材料需要严格的安全协议,以保护研究人员和患者免受不必要的辐射。此外,放射性标记废物的处置必须小心管理,以防止环境污染。 随着技术的进步,荧光标记和磁共振成像(MRI)等替代方法正在被探索作为radiolabel(放射性标记)的潜在替代品。这些技术提供了非放射性的选项用于追踪生物过程,但它们可能并不总是提供与放射性标记相同的细节或灵敏度。 总之,radiolabel(放射性标记)在科学研究中的应用在推动我们对生物系统的理解和开发新治疗策略方面发挥着关键作用。尽管存在挑战和风险,但从放射性标记技术中获得的见解是无价的。随着我们继续探索科学的前沿,radiolabel(放射性标记)方法的整合可能仍将是生物化学、药理学和医学成像研究的基石。
文章标题:radiolabel的意思是什么
文章链接:https://www.liuxue886.cn/danci/457120.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论