radiuses
简明释义
n. 半径(radius 的复数)
英英释义
The plural form of 'radius', referring to the distance from the center of a circle or sphere to its perimeter or surface. | 半径的复数形式,指从圆形或球体的中心到其周边或表面的距离。 |
单词用法
曲率半径 | |
半径补偿;径差补偿 |
同义词
半径 | 这些圆的半径各不相同。 | ||
周长 | The circumferences of the circles can be calculated using their radii. | 可以通过它们的半径来计算这些圆的周长。 |
反义词
中心 | 这些圆的中心彼此等距。 | ||
点 | 交点创造出独特的几何形状。 |
例句
1.The natures of projection of a group of conjugate radiuses of the circle and sphere on other group are studied.
研究了圆、圆球的一组其轭半径在另一组共轭半径上的投影性质。
2.Thus, this mechanism offers a supplement for the drawing arc. especially, it is of practical value to longer radiuses.
对画较大半径的园弧有一定的实用价值。
3.By calculating the radiuses that the car swerves accurately, the system improves its ability of swerving and the driving efficiency.
系统通过精确地计算车辆的转弯半径,增强了系统的转弯能力,提高了探路车转弯行驶的效率。
4.Saturation time headways with different lane widths and turning radiuses were measured on the spot and abnormal data were identified and eliminated.
针对我国现有道路交通条件下典型的信号控制交叉口,对不同车道宽度、转弯半径的右转车道的饱和车头时距进行现场测定。
5.OPC areas in adjacent information storage layers are disposed within different radiuses of the information storage medium.
相邻的信息存储层中的OPC区被布置在所述信息存储介质的不同半径之内。
6.The radiuses of equivalent Gaussian beam of different kinds of lasers are studied by using 86.5% loop enclosing power method.
利用8 6 . 5 %环围功率法研究不同类型的激光器的等效高斯光束半径。
7.The teacher explained that circles can have different radiuses 半径 depending on their size.
老师解释说,圆的大小可以有不同的radiuses 半径。
8.In geometry, the formula for the area of a circle involves its radiuses 半径.
在几何学中,圆的面积公式涉及其radiuses 半径。
9.Different planets have varying radiuses 半径 which affect their gravitational pull.
不同的行星有不同的radiuses 半径,这会影响它们的引力。
10.The architect designed the dome with two distinct radiuses 半径 for aesthetic purposes.
建筑师为美观设计了两个不同的radiuses 半径的圆顶。
11.To calculate the volume of a sphere, you need to know its radiuses 半径.
要计算球体的体积,你需要知道它的radiuses 半径。
作文
In the world of mathematics, understanding shapes and their properties is crucial. One common shape we encounter is the circle. A circle is defined as the set of all points in a plane that are at a given distance from a fixed point, known as the center. The distance from the center to any point on the circle is called the radius. However, when discussing circles in various contexts, it is essential to recognize that circles can have different sizes, leading us to the concept of multiple radiuses (半径). When we think about a single circle, we often refer to its radius in singular terms. But what happens when we deal with multiple circles? For instance, in geometry, we may find ourselves comparing two or more circles, each with its own unique size. In such cases, we must use the plural form, radiuses, to describe the different distances from their respective centers to their circumferences. Understanding the concept of radiuses (半径) becomes particularly important when we explore real-world applications. For example, when designing a circular garden, the gardener must consider the radiuses of the plants being used. Different plants may require different amounts of space; thus, knowing the radiuses helps in planning how many plants can fit within the garden without overcrowding. Additionally, in physics, the notion of radiuses is vital when discussing orbits. Planets and moons travel in elliptical paths, and while the average distance from the center of the planet to the orbiting body can be referred to as a radius, the varying distances during the orbit necessitate the consideration of multiple radiuses (半径). This understanding aids astronomers in predicting orbital patterns and behaviors. Moreover, in the field of engineering, the concept of radiuses plays a significant role in design and construction. When creating objects with circular components, such as wheels or gears, engineers must account for the different radiuses involved to ensure proper functionality. If the radiuses are not calculated correctly, the machinery may not operate smoothly, leading to inefficiencies or even failures. Furthermore, in everyday life, we encounter situations where understanding radiuses (半径) is beneficial. For instance, if one were to measure the distance a car can travel around a roundabout, knowing the radiuses of the roundabout's curves can help in determining safe speeds and optimal driving paths. In conclusion, the concept of radiuses is an essential aspect of mathematics that extends far beyond theoretical discussions. Whether in gardening, astronomy, engineering, or everyday scenarios, recognizing and applying the idea of multiple radiuses (半径) allows us to navigate and understand the world more effectively. As we continue to explore various fields, the importance of grasping this concept will undoubtedly become more apparent, emphasizing the interconnectedness of mathematics with practical applications in our lives.
在数学的世界中,理解形状及其属性至关重要。我们常遇到的一个常见形状是圆。圆被定义为平面中所有点的集合,这些点与一个固定点(称为中心)之间的距离相等。中心到圆上任意一点的距离称为半径。然而,在讨论不同背景下的圆时,认识到圆可以具有不同的大小是非常重要的,这引出了多个radiuses(半径)的概念。 当我们想到单个圆时,我们通常以单数形式提到它的半径。但是,当我们处理多个圆时会发生什么呢?例如,在几何学中,我们可能会发现自己在比较两个或多个圆,每个圆都有自己独特的大小。在这种情况下,我们必须使用复数形式radiuses来描述它们各自的中心到周边的不同距离。 理解radiuses(半径)的概念在我们探索现实世界的应用时变得尤为重要。例如,在设计一个圆形花园时,园丁必须考虑所用植物的radiuses。不同的植物可能需要不同的空间,因此,了解radiuses有助于规划在花园中可以容纳多少植物,而不会造成过度拥挤。 此外,在物理学中,当讨论轨道时,radiuses的概念至关重要。行星和卫星沿椭圆路径运动,虽然从行星中心到轨道物体的平均距离可以称为半径,但在轨道过程中变化的距离使得考虑多个radiuses成为必要。这种理解帮助天文学家预测轨道模式和行为。 此外,在工程领域,radiuses的概念在设计和建造中发挥着重要作用。当创建具有圆形组件的物体时,例如轮子或齿轮,工程师必须考虑涉及的不同radiuses以确保功能正常。如果radiuses计算不正确,机械可能无法平稳运行,从而导致低效甚至故障。 此外,在日常生活中,我们遇到的情况也表明理解radiuses(半径)是有益的。例如,如果有人要测量汽车在环形交叉口周围可以行驶的距离,了解环形交叉口曲线的radiuses可以帮助确定安全速度和最佳行驶路径。 总之,radiuses的概念是数学中的一个基本方面,超越了理论讨论。无论是在园艺、天文学、工程还是日常场景中,认识和应用多个radiuses(半径)的思想使我们能够更有效地导航和理解世界。随着我们继续探索各个领域,掌握这一概念的重要性无疑将变得更加明显,强调了数学与我们生活中实际应用之间的相互联系。
文章标题:radiuses的意思是什么
文章链接:https://www.liuxue886.cn/danci/457227.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论