radius
简明释义
n. 半径;半径范围,周围;(剖)桡骨;(昆)径脉;(棘皮动物或腔肠动物的)辐射对称轴
v. 使(角,边缘)成弧形
【名】 (Radius)(意、印尼)拉迪乌斯,(英)雷迪厄斯,(法)拉迪于斯(人名)
复 数 r a d i i 或 r a d i u s e s
英英释义
单词用法
曲率半径 | |
半径补偿;径差补偿 |
同义词
反义词
直径 | 一个圆的直径是半径的两倍。 | ||
距离 | The distance from the center to any point on the circle is the radius. | 从圆心到圆上任意一点的距离是半径。 |
例句
1.For the eccentric model, Hipparchus found for the ratio between the radius of the eccenter.
对于偏心模型,希帕克斯发现了偏心半径之间的比率。
2.Reduce radius of synodical arc of tee.
缩小三通相贯区内拐角处圆弧半径。
3.The actual speed is the radius times angular velocity.
实际的速度就是半径乘以角速度。
4.RADIUS server software can be obtained from several sources.
RADIUS服务器软件可以从多个地方获得。
5.So the radius will just be this distance here.
所以半径就是这里的距离。
6.Security key for the RADIUS server.
RADIUS服务器的安全密钥。
7.Simply change the radius to 2000, and you should start to see some results.
只需将半径更改为2000,您应当便会看到一些结果,当然。
8.Here is atomic radius versus atomic number.
这是原子半径和原子序数。
9.They deliver to within a 5-mile radius of the store.
他们在距离商场5英里的范围内送货上门。
10.The park has a walking path with a radius 半径 of 500 meters.
公园有一条步道,其半径为500米。
11.To calculate the area of a circle, you need to know the radius 半径.
要计算圆的面积,你需要知道半径。
12.The radius 半径 of the tire is important for ensuring a smooth ride.
轮胎的半径对于确保平稳驾驶很重要。
13.We need to find a location within a radius 半径 of 10 miles from the city center.
我们需要找到距离市中心10英里内的地点。
14.The radius 半径 of the circle is half of its diameter.
圆的半径是直径的一半。
作文
In the study of geometry, the concept of a radius plays a crucial role in understanding the properties of circles and spheres. The radius is defined as the distance from the center of a circle to any point on its circumference. This simple yet significant measurement allows us to calculate various attributes of circular shapes, such as the area and the circumference. The formula for the area of a circle, for instance, is given by A = πr², where r represents the radius. This formula illustrates how the radius influences the overall size of the circle, emphasizing its importance in geometric calculations. In practical applications, the radius is not limited to theoretical mathematics; it appears in various real-world scenarios. For example, when designing wheels for vehicles, engineers must consider the radius to ensure optimal performance and safety. A larger radius generally means a smoother ride, but it also affects the vehicle's handling and speed. Therefore, understanding the implications of the radius is essential for anyone involved in engineering or design. Moreover, the radius finds relevance in fields beyond geometry. In physics, it can describe the path of an object moving in a circular motion. The radius of a planet's orbit, for instance, is crucial in calculating gravitational forces and understanding celestial mechanics. This interconnectedness of the radius with various scientific principles highlights its versatility and importance across disciplines. In addition to its scientific significance, the radius can also be observed in everyday life. Consider a pizza: the radius determines how large each slice can be. When sharing a pizza among friends, knowing the radius helps us understand how many slices we can get and how much each person will receive. Similarly, the radius of a garden or a park can influence how much space is available for recreational activities, illustrating its practical relevance in urban planning and community development. Furthermore, the radius can serve as a metaphor for boundaries in our personal lives. Just as a circle is defined by its radius, our comfort zones can be seen as circles that define how far we are willing to go outside our familiar environments. Expanding our radius in this context can lead to personal growth and new experiences, encouraging us to step beyond our limitations. In conclusion, the radius is more than just a mathematical term; it is a fundamental concept that permeates various aspects of life. From geometry and physics to everyday situations and personal development, the radius helps us understand the world around us. By grasping the significance of the radius, we can appreciate its role in both theoretical and practical contexts, making it an essential element of our knowledge base. As we continue to explore and learn, the radius will undoubtedly remain a vital part of our understanding of shapes, spaces, and even ourselves.
在几何学的研究中,半径的概念在理解圆形和球体的性质方面起着至关重要的作用。半径被定义为从圆心到圆周上任意一点的距离。这个简单而重要的测量使我们能够计算圆形的各种属性,如面积和周长。例如,圆的面积公式为A = πr²,其中r代表半径。这个公式说明了半径如何影响圆的整体大小,强调了它在几何计算中的重要性。 在实际应用中,半径不仅限于理论数学;它出现在各种现实场景中。例如,在设计车辆轮子时,工程师必须考虑半径以确保最佳性能和安全性。较大的半径通常意味着更平稳的驾驶,但也会影响车辆的操控性和速度。因此,理解半径的影响对于任何参与工程或设计的人来说都是至关重要的。 此外,半径在超越几何学的领域中也具有相关性。在物理学中,它可以描述物体在圆周运动中的路径。例如,行星轨道的半径对于计算引力和理解天体力学至关重要。这种半径与各种科学原理之间的相互关联突显了它在各个学科中的多功能性和重要性。 除了科学意义外,半径也可以在日常生活中观察到。以比萨饼为例:半径决定了每片的大小。当与朋友分享比萨饼时,了解半径有助于我们理解可以得到多少片,以及每个人将获得多少。同样,花园或公园的半径可以影响可用于休闲活动的空间,说明了它在城市规划和社区发展中的实际相关性。 此外,半径可以作为我们个人生活中界限的隐喻。就像一个圆是由其半径定义的,我们的舒适区可以被视为定义我们愿意走出熟悉环境的圈子。在这种情况下,扩展我们的半径可以导致个人成长和新体验,鼓励我们超越自己的局限。 总之,半径不仅仅是一个数学术语;它是一个基本概念,渗透到生活的各个方面。从几何学和物理学到日常情况和个人发展,半径帮助我们理解周围的世界。通过掌握半径的重要性,我们可以欣赏它在理论和实践背景中的作用,使其成为我们知识体系中的一个重要元素。随着我们继续探索和学习,半径无疑将继续作为我们对形状、空间乃至自身理解的重要组成部分。
文章标题:radius的意思是什么
文章链接:https://www.liuxue886.cn/danci/457231.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论