recta
简明释义
n. 直肠(rectum 的复数)
英英释义
A straight line or direction, often used in mathematics and geometry. | 一条直线或方向,通常用于数学和几何学。 |
In anatomy, refers to structures that are straight or rectilinear. | 在解剖学中,指的是直的或呈直线形的结构。 |
单词用法
同义词
直的 | 她在纸上画了一条直线。 | ||
直接的 | 他选择了直达目的地的路线。 | ||
线性的 | 这个线性方程很容易解。 |
反义词
曲线 | 这条路在公园中沿着一条曲线行进。 | ||
不规则的 | 湖泊的不规则形状使其独特。 |
例句
1.The utility model is simple and practical, being applicable for arteriolar bleeding of the wound-surface after operation, in particular to compared deep position like lower segment of the recta, etc.
本实用新型简单实用,适于手术后创面的小动脉出血,尤其是直肠下段等较深部位出血。
2.The utility model is simple and practical, being applicable for arteriolar bleeding of the wound-surface after operation, in particular to compared deep position like lower segment of the recta, etc.
本实用新型简单实用,适于手术后创面的小动脉出血,尤其是直肠下段等较深部位出血。
3.When contrast-enhanced CT depicts hypervascularity of the mesentery with vascular dilatation, tortuosity, and wide spacing of the vasa recta , the comb sign is produced.
当增强CT显示血管扩张、迂曲而血管增多的肠系膜和广泛分布的直小血管,产生梳征。
4.Under neutral condition capsaicinoids is the stablest, recta-acid or leaning alkalinity are stronger, more disadvantageous to capsaicinoids.
在中性条件下辣椒素最稳定,偏酸或偏碱性越强,越不利于辣椒碱。
5.Furthermore, in this paper, general differential equations and its solutions of two dimensional MHD flow along the recta...
此外,本文还给出了电磁流体沿矩形管道二维流动的普遍微分方程及其解。
6.The line drawn on the graph is a recta (直线) that represents the relationship between the two variables.
图上画出的线是一条recta(直线),表示两个变量之间的关系。
7.In geometry, a recta (直线) is defined as a straight one-dimensional figure with no thickness.
在几何学中,recta(直线)被定义为一种没有厚度的直线一维图形。
8.To find the slope of a recta (直线), you need two points on the line.
要找到一条recta(直线)的斜率,你需要线上两个点。
9.The shortest distance between two points is always a recta (直线).
两点之间的最短距离总是一条recta(直线)。
10.In calculus, we often use rectas (直线) to approximate curves at certain points.
在微积分中,我们常常使用rectas(直线)在某些点上近似曲线。
作文
In the realm of geometry, the term recta refers to a straight line. Understanding the concept of a recta is fundamental for students and professionals alike, as it serves as the building block for more complex geometric shapes and theories. A recta is not just a simple line; it represents an infinite set of points that extend in two opposite directions without any curvature. This characteristic of being straight makes the recta essential in various applications, from drafting architectural designs to creating graphs in mathematics. When we think about the properties of a recta, we can identify several key aspects. Firstly, a recta has no thickness; it is purely one-dimensional. This property allows us to measure the distance between two points along the recta, which is crucial in both theoretical and practical scenarios. Secondly, a recta can be defined by two points. For example, if we have points A and B, we can draw a recta that connects these points, illustrating the shortest path between them. In addition to its basic definition, the concept of a recta extends into various branches of mathematics and science. In algebra, for instance, the equation of a recta can be represented in slope-intercept form as y = mx + b, where m is the slope and b is the y-intercept. This equation helps us understand how changes in variables affect the position of the recta on a graph. Similarly, in physics, rectas are often used to represent trajectories of moving objects under constant velocity, providing insights into motion and direction. Moreover, the concept of a recta is not limited to two-dimensional spaces. In three-dimensional geometry, rectas can also be described in relation to planes and other geometric figures. The intersection of rectas can lead to various geometric constructs, such as angles and polygons, showcasing the interconnectedness of mathematical concepts. Understanding rectas also enhances our problem-solving skills. Many geometric problems require the application of rectas to find solutions. For example, when determining the area of a triangle, one must first understand the rectas that form the triangle’s sides. By applying the properties of rectas, we can derive formulas and solve complex problems efficiently. In conclusion, the term recta embodies more than just a straight line; it encapsulates a fundamental principle that permeates various fields of study. From geometry to physics, the understanding of rectas is crucial for anyone looking to grasp the intricacies of mathematical relationships. As we continue to explore the world of mathematics, let us appreciate the simplicity yet profound significance of the recta in shaping our understanding of space, movement, and structure. By mastering the concept of rectas, we lay a strong foundation for further exploration in the vast landscape of mathematics and science.
在几何学领域,术语recta指的是一条直线。理解recta的概念对于学生和专业人士来说都是基础,因为它是更复杂的几何形状和理论的构建块。recta不仅仅是一条简单的线;它代表着一个无限的点集,这些点在两个相对方向上延伸,没有任何弯曲。直线的这个特性使得recta在各种应用中至关重要,从绘制建筑设计到创建数学图表。 当我们思考recta的属性时,可以识别出几个关键方面。首先,recta没有厚度;它纯粹是一维的。这一特性使我们能够沿着recta测量两个点之间的距离,这在理论和实践场景中都至关重要。其次,recta可以通过两个点来定义。例如,如果我们有点A和B,我们可以画出连接这两个点的recta,展示它们之间的最短路径。 除了基本定义之外,recta的概念还扩展到数学和科学的各个分支。在代数中,例如,recta的方程可以用斜截式表示为y = mx + b,其中m是斜率,b是y截距。这个方程帮助我们理解变量变化如何影响recta在图表上的位置。同样,在物理学中,rectas通常用于表示在恒定速度下移动物体的轨迹,提供对运动和方向的洞察。 此外,recta的概念并不限于二维空间。在三维几何中,rectas也可以与平面和其他几何图形相关联进行描述。rectas的交点可以导致各种几何构造,如角和多边形,展示了数学概念的相互联系。 理解rectas也增强了我们的解决问题的能力。许多几何问题需要应用rectas来找到解决方案。例如,当确定三角形的面积时,必须首先理解构成三角形边的rectas。通过应用rectas的属性,我们可以推导公式并有效地解决复杂问题。 总之,术语recta不仅仅代表一条直线;它包含了一个基本原则,该原则渗透到各个研究领域。从几何到物理,理解rectas对于任何希望掌握数学关系复杂性的人来说都是至关重要的。当我们继续探索数学的世界时,让我们欣赏recta的简单性以及它在塑造我们对空间、运动和结构理解中的深远意义。通过掌握rectas的概念,我们为在广阔的数学和科学领域进一步探索奠定了坚实的基础。
文章标题:recta的意思是什么
文章链接:https://www.liuxue886.cn/danci/460060.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论