rectilineal
简明释义
英[ˌrɛktɪˈlɪniəl]美[ˌrɛktɪˈlɪniəl]
adj. 直线的;(哥特式建筑的)以垂直线条为特征的;以直线构成的
英英释义
与直线有关或由直线组成。 |
单词用法
同义词
线性的 | 汽车的行驶路径是线性的,沿着一条直路。 | ||
直的 | In geometry, a rectilineal figure is composed of straight lines. | 在几何学中,直线图形由直线组成。 | |
直接的 | The direct route to the destination is often the most efficient. | 到达目的地的直接路线通常是最有效的。 |
反义词
曲线的 | 河流所走的路径是曲线的。 | ||
非线性的 | In physics, many phenomena are described by nonlinear equations. | 在物理学中,许多现象由非线性方程描述。 |
例句
1.The architect designed a building with rectilineal 直线的 shapes to create a modern aesthetic.
建筑师设计了一座具有rectilineal 直线的形状的建筑,以创造现代美感。
2.In geometry, a rectilineal 直线的 figure is defined as one that consists entirely of straight lines.
在几何学中,rectilineal 直线的图形被定义为完全由直线组成的图形。
3.The artist preferred rectilineal 直线的 designs over curves in her latest series of paintings.
这位艺术家在她最新的系列画作中更喜欢rectilineal 直线的设计,而非曲线。
4.Urban planners often use rectilineal 直线的 grids to organize city layouts efficiently.
城市规划者通常使用rectilineal 直线的网格来高效地组织城市布局。
5.The furniture was designed with rectilineal 直线的 forms to complement the minimalist style of the room.
这些家具采用rectilineal 直线的形式设计,以补充房间的极简风格。
作文
In the realm of geometry, the term rectilineal refers to figures or shapes that consist of straight lines. This concept is fundamental in understanding various geometric properties and relationships. For instance, a triangle, which is one of the simplest forms of polygons, can be classified as rectilineal because it is formed by three straight line segments connecting three points. The significance of rectilineal shapes extends beyond mere definitions; they are essential in both theoretical and practical applications. In architecture, for example, the use of rectilineal designs often leads to structures that are not only aesthetically pleasing but also structurally sound. The straight lines provide a sense of order and stability, making them a popular choice among architects and designers. Moreover, the concept of rectilineal movement is crucial in physics and engineering. When an object moves in a straight path, it is said to be undergoing rectilineal motion. This type of motion is characterized by a constant velocity unless acted upon by an external force, in accordance with Newton's first law of motion. Understanding rectilineal motion allows engineers to design better transportation systems, such as roads and railways, that minimize friction and maximize efficiency. In addition to its applications in architecture and physics, the idea of rectilineal can also be found in art. Many artists have utilized straight lines and rectilineal forms to create striking compositions that convey clarity and precision. The modern art movement, in particular, has seen a rise in the use of rectilineal elements, where artists explore the relationship between line, shape, and space. The works of artists like Piet Mondrian exemplify how rectilineal forms can evoke strong emotional responses while adhering to strict geometric principles. Furthermore, in mathematics, rectilineal figures are studied extensively. The properties of rectilineal polygons, such as their angles and sides, are foundational concepts that lead to more advanced topics in geometry. For students, mastering the characteristics of rectilineal shapes is essential for success in higher-level mathematics. These principles form the building blocks for understanding more complex geometrical theories and applications. In conclusion, the term rectilineal encapsulates a wide array of concepts across different fields. Whether in geometry, physics, art, or mathematics, rectilineal shapes and movements play a crucial role in our understanding of the world around us. The simplicity of straight lines belies their importance in creating order, beauty, and functionality in various disciplines. As we continue to explore these ideas, it becomes clear that the study of rectilineal forms is not just an academic exercise but a vital aspect of our interaction with the environment, technology, and artistic expression.
在几何学领域,术语rectilineal指的是由直线组成的图形或形状。这个概念对于理解各种几何属性和关系至关重要。例如,三角形作为多边形中最简单的形状之一,可以被归类为rectilineal,因为它是由三条直线段连接三个点构成的。rectilineal形状的意义超出了简单的定义;它们在理论和实际应用中都是必不可少的。在建筑学中,例如,使用rectilineal设计通常会导致不仅美观而且结构稳固的建筑。直线提供了一种秩序感和稳定性,使其成为建筑师和设计师的热门选择。 此外,rectilineal运动的概念在物理学和工程学中至关重要。当一个物体沿直线路径移动时,它被称为正在经历rectilineal运动。这种类型的运动的特点是恒定速度,除非受到外力的作用,这符合牛顿第一运动定律。理解rectilineal运动使工程师能够设计更好的交通系统,例如减少摩擦和最大化效率的道路和铁路。 除了在建筑和物理学中的应用,rectilineal的理念也可以在艺术中找到。许多艺术家利用直线和rectilineal形式来创作引人注目的作品,传达清晰和精确的感觉。现代艺术运动特别看到rectilineal元素的使用增加,艺术家们探讨线、形状和空间之间的关系。像皮特·蒙德里安这样的艺术作品例证了如何通过严格的几何原则唤起强烈的情感反应。 此外,在数学中,rectilineal图形被广泛研究。rectilineal多边形的性质,如其角度和边,是基础概念,导致更高级的几何主题。对于学生来说,掌握rectilineal形状的特征对在更高层次的数学中取得成功至关重要。这些原理构成了理解更复杂几何理论和应用的基础。 总之,术语rectilineal涵盖了不同领域的一系列概念。无论是在几何学、物理学、艺术还是数学中,rectilineal形状和运动在我们理解周围世界方面发挥着至关重要的作用。直线的简单性掩盖了它们在创造秩序、美感和功能性方面的重要性。随着我们继续探索这些思想,变得清晰的是,研究rectilineal形式不仅仅是一项学术练习,而是我们与环境、技术和艺术表现互动的一个重要方面。
文章标题:rectilineal的意思是什么
文章链接:https://www.liuxue886.cn/danci/460084.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论