recurs
简明释义
复发
重现
循环(recur 的第三人称单数)
英英释义
再次或重复发生。 | |
In mathematics or computer science, to call a function within itself. | 在数学或计算机科学中,指一个函数在其内部调用自身。 |
单词用法
这个问题反复出现 | |
当它再次发生时 | |
如果它再次发生 | |
它经常重复出现 | |
周期性地重复 | |
在自然界中反复出现 | |
回到一个主题 | |
在对话中反复出现 |
同义词
再发生 | 如果不妥善处理,这个问题可能会再发生。 | ||
重新出现 | 症状在治疗后可能会重新出现。 | ||
重复 | 我们需要重复实验以获得更可靠的结果。 | ||
重新浮现 | 旧记忆往往会意外地重新浮现。 |
反义词
停止 | 如果没有获得资金,这个项目将停止存在。 | ||
中断 | The company discontinues its product line due to low demand. | 由于需求低,该公司中断了其产品线。 |
例句
1.Small world recurs the real academic world of the Western society.
《小世界》再现了当今西方学术界和西方社会的真实面貌。
2.An episode of major depression may occur only once in a person's lifetime, but more often, it recurs throughout a person's life.
重度抑郁发作可能在一个人的一生中仅出现一次,但更经常的是,它在一个人的一生中反复出现。
3.This festival recurs every five years.
这个节庆每五年举行一次。
4.Designs: Written documents that describe a general solution to a design problem that recurs repeatedly in many projects.
设计:描述针对在很多项目中重复出现的设计问题的通用解决方案的书面文档。
5.This theme recurs several times throughout the book.
这一主题在整部书里出现了好几次。
6.Leap year recurs every four years, and in that year February have 29days.
闰年每四年一次,在闰年的那一年,二月份只有29天。
7.A chance happens, but it never recurs.
只发生过一次,但是没再复发过。
8.If the pain recurs, take this medicine.
如果病痛复发,就服这种药。
9.After one bad attack, her malaria never recurs any more.
她的疟疾剧烈发作过一次后,就再也没有复发了。
10.If the problem recurs, we need to find a permanent solution.
如果这个问题再次出现,我们需要找到一个永久的解决方案。
11.The theme of love recurs throughout the novel.
爱这个主题在小说中反复出现。
12.Every time she visits, the same issue recurs in our discussions.
每次她来访时,我们讨论中总会再次提到同样的问题。
13.In mathematics, this function recurs in various calculations.
在数学中,这个函数在各种计算中反复出现。
14.The phrase recurs frequently in her speeches.
这个短语在她的演讲中频繁出现。
作文
In the world of mathematics and computer science, the concept of recursion plays a significant role. Recursion refers to the process where a function calls itself in order to solve a problem. This technique is not only powerful but also elegant, allowing for complex problems to be broken down into simpler, more manageable parts. When we say that a function recurs, we mean that it utilizes its own previous instances to reach a solution. For instance, the classic example of calculating the factorial of a number can be achieved through recursion. The factorial of a number n (denoted as n!) is the product of all positive integers up to n. If we want to compute 5!, we can express it as 5 * 4!, and this continues until we reach 1!, which equals 1. Here, the function recurs by calling itself with reduced values until it hits the base case of 1. Recursion is not limited to mathematics; it is also widely used in programming. Many algorithms, such as those for sorting or searching data, employ recursive techniques. For instance, the quicksort algorithm sorts an array by selecting a 'pivot' element and partitioning the other elements into two sub-arrays, which are then sorted recursively. This method highlights the beauty of recursion: a problem that seems daunting at first can often be simplified by breaking it down into smaller instances of the same problem. However, while recursion is a powerful tool, it is essential to understand its limitations. One major drawback is that recursive functions can lead to high memory usage due to the call stack that builds up with each recursive call. If a function recurs too many times without reaching a base case, it can result in a stack overflow error. Therefore, it is crucial for programmers to ensure that their recursive functions have well-defined base cases and that they do not recurs indefinitely. In addition to its practical applications, recursion also appears in nature and everyday life. For example, consider the branching patterns of trees or the structure of snowflakes. These natural phenomena exhibit self-similar patterns, where smaller sections resemble the whole. This idea of self-similarity is akin to how recursion operates, where smaller instances of a problem mirror the overall problem. In literature and storytelling, themes may recurs throughout a narrative, creating motifs that enhance the depth and meaning of the story. Authors often use this technique to reinforce ideas or emotions, allowing readers to draw connections between different parts of the text. In conclusion, the concept of recursion is a fundamental principle that recurs across various disciplines, from mathematics to programming and even in the natural world. Understanding how recursion works enables us to tackle complex problems more effectively and appreciate the interconnectedness of different fields. As we continue to explore and learn, the idea of recursion will undoubtedly remain a vital part of our intellectual toolkit, reminding us that sometimes, solutions can be found by looking inward and reflecting on the patterns that recurs in our lives and the world around us.
在数学和计算机科学的世界中,递归的概念发挥着重要作用。递归是指一个函数调用自身以解决问题的过程。这种技术不仅强大而且优雅,使复杂的问题可以被分解成更简单、更易于处理的部分。当我们说一个函数recurs时,我们的意思是它利用自身的先前实例来达到解决方案。例如,计算一个数字的阶乘的经典例子就可以通过递归实现。一个数字n的阶乘(记作n!)是所有正整数乘积直到n。如果我们想计算5!,我们可以将其表示为5 * 4!,这一过程会一直持续到我们达到1!,即1。在这里,函数recurs通过调用自身并减少值直到达到基本情况1。 递归不仅限于数学;它在编程中也被广泛使用。许多算法,比如排序或搜索数据,采用递归技术。例如,快速排序算法通过选择一个“基准”元素并将其他元素划分为两个子数组,然后递归地对这两个子数组进行排序来对一个数组进行排序。这种方法突显了递归的美:一个乍看之下令人生畏的问题,往往可以通过将其分解为更小的同类问题来简化。 然而,虽然递归是一种强大的工具,但了解其局限性也至关重要。一个主要缺点是,由于每次递归调用时调用栈的构建,递归函数可能会导致高内存使用。如果一个函数recurs过多次而没有达到基本情况,就可能导致栈溢出错误。因此,程序员必须确保他们的递归函数具有明确定义的基本情况,并且不会recurs无限期。 除了其实际应用外,递归还出现在自然界和日常生活中。例如,考虑树木的分枝模式或雪花的结构。这些自然现象表现出自相似的模式,其中较小的部分与整体相似。这种自相似的思想类似于递归的运作方式,其中问题的较小实例与整体问题相映衬。在文学和叙事中,主题可能在叙述中recurs,创造出增强故事深度和意义的母题。作者经常使用这种技巧来强化思想或情感,使读者能够在文本的不同部分之间建立联系。 总之,递归的概念是一个基本原理,它在各个学科中recurs,从数学到编程,甚至在自然界中。理解递归的工作原理使我们能够更有效地解决复杂问题,并欣赏不同领域之间的相互联系。随着我们不断探索和学习,递归的思想无疑将继续成为我们智力工具箱中的重要组成部分,提醒我们有时,解决方案可以通过向内探索和反思在我们生活和周围世界中recurs的模式来找到。
文章标题:recurs的意思是什么
文章链接:https://www.liuxue886.cn/danci/460180.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论