renormalization
简明释义
英[riːˌnɔːm(ə)laɪˈzeɪʃ(ə)n]美[ˈriˌnɔməlɪˈzeʃən]
n. 重正化;再归一化
英英释义
单词用法
量子场论重正化 | |
重正化群 | |
重正化过程 | |
重正化变换 | |
执行重正化 | |
应用重正化 | |
经历重正化 | |
重正化常数 |
同义词
重正化群 | The renormalization group is a powerful tool in theoretical physics. | 重正化群是理论物理学中的一种强大工具。 |
反义词
归一化 | Normalization is often used in data processing to ensure consistency. | 归一化常用于数据处理,以确保一致性。 | |
不稳定化 | Destabilization can lead to unpredictable results in physical systems. | 不稳定化可能导致物理系统中不可预测的结果。 |
例句
1.In the minimum electromagnetismcoupling model of interaction between photonand electron(antielectron), we obtain the renormalization finite quantity of photon chain propagator.
采用光子与电子(正电子)的最小电磁耦合模型,获得了光子链图传播子重整化的有限量。
2.The usual ways to study the subject are the transfer-matrix method, combination solution, the renormalization-group technique, and graphic expansion, and so forth.
在研究这类问题时,常用的理论方法有转移矩阵法、组合解法、重整化群方法及图形展开法等。
3.Wilson's Numerical Renormalization Group (NRG) method is such a celebrated example, which is also the focus of this thesis.
威尔逊的数值重整化群方法(NRG)是其中一个很著名的例子,同时也是本论文讨论的中心所在。
4.Propagation feature of optical soliton near the zero-dispersion wavelength point is researched by using Reductive Perturbation Method (RPM) and Renormalization Method in this paper.
本文利用约化摄动重整化方法研究了光纤零色散波长点附近光孤子传输的特征。
5.Using the real-space renormalization group transformation method, critical behavior on two-dimension and d-dimension(d>2) X fractal lattices is studied.
采用实空间重整化群变换的方法,研究了2维和d(d>2)维X分形晶格上的临界性质。
6.These transformations are made up of renormalization group. Then the fixed point of transformation can be found, among which those unstable ones are critical points of phase transition.
然后找出重整化变换的不动点,在所有不动点中那些不稳定不动点是发生相变的临界点。
7.In this article, the critical exponents of the polymer model SAT in two dimensional square lattice have been studied with the real space renormalization theory.
用实空间中的重整化群理论,对二维正方形格点上的高分子模型自踪迹规避链进行了求解。
8.It was a time when ideas called renormalization and gauge theories were becoming fruitful and I was very excited by that.
当时的想法所谓的重整和规范理论已成为富有成果,我感到非常兴奋地说。
9.As an example, we app it to calculate the thermodynamic potential of two-loop QED and the renormalization.
作为应用的例子,计算了QED的双圈热力学势及其重整化。
10.In quantum field theory, renormalization is essential for making sense of infinite quantities.
在量子场论中,重整化 对于理解无限量是至关重要的。
11.The process of renormalization allows physicists to derive meaningful predictions from seemingly divergent integrals.
通过重整化过程,物理学家可以从看似发散的积分中推导出有意义的预测。
12.Many theories in statistical mechanics utilize renormalization group methods to analyze phase transitions.
统计力学中的许多理论利用重整化群方法来分析相变。
13.The concept of renormalization has also found applications in condensed matter physics.
在凝聚态物理学中,重整化的概念也找到了应用。
14.Understanding renormalization is crucial for anyone studying advanced quantum mechanics.
理解重整化对于任何研究高级量子力学的人来说都是至关重要的。
作文
In the realm of theoretical physics, particularly in quantum field theory, the concept of renormalization plays a crucial role in making sense of infinite quantities that arise in calculations. At its core, renormalization is a mathematical procedure that allows physicists to remove these infinities by redefining certain parameters in a way that yields finite and meaningful results. This process is not merely a technical trick; it reflects a deeper understanding of the physical theories that govern the universe. To illustrate the importance of renormalization, consider the example of quantum electrodynamics (QED), which describes how light and matter interact. In QED, when calculating the properties of electrons, one encounters divergences—quantities that tend toward infinity. Without renormalization, these calculations would be meaningless, as they would suggest that particles have infinite mass or charge. The renormalization procedure allows physicists to absorb these infinities into redefined constants, such as the electron's mass and charge, resulting in predictions that match experimental observations remarkably well. The process of renormalization can be thought of as a way to bridge the gap between the microscopic world of quantum mechanics and the macroscopic world we observe. It provides a systematic method for dealing with the complexities that arise when trying to describe interactions at very small scales. Through renormalization, theorists can make accurate predictions about phenomena ranging from the behavior of fundamental particles to the properties of materials at low temperatures. Moreover, renormalization has applications beyond particle physics. In statistical mechanics, for instance, it helps in understanding phase transitions, such as the transition from a liquid to a gas. By analyzing systems at different scales, scientists can identify universal behaviors that emerge, regardless of the specific details of the system. This universality is a hallmark of renormalization, showcasing its power in describing complex systems across various fields of science. The philosophical implications of renormalization are also significant. It challenges our conventional notions of reality and measurement. Since renormalization involves redefining physical quantities, it raises questions about the nature of these quantities themselves. Are they intrinsic properties of particles, or do they depend on the energy scale at which we measure them? This inquiry leads to deeper discussions about the nature of physical laws and the extent to which our measurements reflect an underlying reality. In conclusion, renormalization is more than just a mathematical tool; it is a fundamental concept that underpins much of modern physics. Its ability to tame infinities and provide meaningful results has revolutionized our understanding of the universe. As we continue to explore the frontiers of science, the principles of renormalization will undoubtedly remain central to our quest for knowledge, reminding us of the intricate connections between mathematics, physics, and the nature of reality itself.
在理论物理的领域,特别是在量子场论中,重整化的概念在理解计算中出现的无限数量方面发挥着至关重要的作用。重整化本质上是一种数学程序,允许物理学家通过重新定义某些参数来消除这些无穷大,从而产生有限且有意义的结果。这个过程不仅仅是一个技术技巧;它反映了对支配宇宙的物理理论更深刻的理解。 为了说明重整化的重要性,考虑量子电动力学(QED)的例子,它描述了光和物质之间的相互作用。在QED中,当计算电子的性质时,会遇到发散——趋向于无穷大的量。如果没有重整化,这些计算将毫无意义,因为它们会暗示粒子具有无限的质量或电荷。重整化程序允许物理学家将这些无穷大吸收到重新定义的常数中,例如电子的质量和电荷,从而产生与实验观察结果极为吻合的预测。 重整化的过程可以被视为弥合量子力学微观世界与我们观察到的宏观世界之间差距的一种方式。它提供了一种系统的方法来处理在试图描述非常小尺度的相互作用时出现的复杂性。通过重整化,理论家能够对从基本粒子的行为到低温材料的特性等现象做出准确的预测。 此外,重整化在粒子物理之外也有应用。例如,在统计力学中,它有助于理解相变,例如从液体到气体的转变。通过分析不同尺度的系统,科学家可以识别出无论系统的具体细节如何,都会出现的普遍行为。这种普遍性是重整化的一个标志,展示了它在描述各种科学领域复杂系统中的力量。 重整化的哲学意义也很重要。它挑战了我们对现实和测量的传统观念。由于重整化涉及重新定义物理量,这引发了关于这些量本质的问题。它们是粒子的内在属性,还是依赖于我们测量的能量尺度?这一探讨引导我们深入讨论物理定律的本质以及我们的测量在多大程度上反映了潜在的现实。 总之,重整化不仅仅是一个数学工具;它是现代物理学许多基础概念的核心。它驯服无穷大的能力并提供有意义的结果,彻底改变了我们对宇宙的理解。随着我们继续探索科学的前沿,重整化的原则无疑将继续在我们追求知识的过程中占据中心地位,提醒我们数学、物理和现实本质之间错综复杂的联系。
文章标题:renormalization的意思是什么
文章链接:https://www.liuxue886.cn/danci/463052.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论