secant
简明释义
adj. 割的;切的;交叉的
n. 割线;正割
英英释义
A secant is a line that intersects a curve at two or more points. | 割线是与曲线在两个或多个点相交的直线。 |
In trigonometry, the secant of an angle is the reciprocal of the cosine of that angle. | 在三角学中,一个角的割余弦是该角余弦的倒数。 |
单词用法
[化]割线法;正割法 | |
双曲正割 |
同义词
反义词
切线 | 切线在曲线上恰好接触一个点。 | ||
法线 | The normal line is perpendicular to the tangent at the point of contact. | 法线在接触点与切线垂直。 |
例句
1.The detailed comparison shown that secant modulus ratio isn't constant, this phenomenon is exist even though at the quasi-elastic deformation phase.
详细的比较表明,在不同的变形阶段,两者割线模量之比并非常数,即使是在准弹性变形阶段,也存在这一现象。
2.The main blade and the blade Angle secant Angle precision instrument by the visual display.
主锯片及割线锯片倾角由精密角度仪直观显示。
3.The sign of the chirp also affects the spatial intensity distribution of the ultrashort hyperbolic secant pulsed beams.
啁啾系数的大小和符号对双曲正割脉冲光束空间强度的分布有不同的影响。
4.It is reasonable to fit the relation curve between secant-modulus difference and pressure by using exponential form.
割线模量差与初始含水量的关系曲线按指数形式进行拟合比较合理。
5.By starting from the paraxial wave equation, the analytical expression of the ultrashort Hyperbolic Secant pulsed beam are deduced.
从傍轴波动方程出发,给出了超短双曲正割脉冲光束的解析解。
6.This study also points out the shortcomings, hope to play a guiding role of the Secant Piles technology application in Xi 'an area.
同时指出了本文研究工作不足之处,希望能为钻孔咬合桩工艺在西安地区的应用起到一定的指导作用。
7.Firstly, the paper puts out the formulas used to calculate displacement by secant modulus, which think about the influence on lateral displacement.
提出了饱和粘土利用割线模量法计算固结沉降,且考虑侧向变形影响的公式。
8.A new damping estimation method, the secant line method, was presented, that is based on the distance of neighbor peaks and valley of oscillation.
提出利用相邻波峰和波谷之间距离估计阻尼比的割线方法。
9.In geometry, a secant 割线 intersects a circle at two points.
在几何中,secant 割线 在圆上与两个点相交。
10.The slope of the secant 割线 can be used to approximate the slope of the tangent line.
secant 割线 的斜率可以用来近似切线的斜率。
11.To find the length of the secant 割线, use the distance formula between the two intersection points.
要找出 secant 割线 的长度,可以使用两交点之间的距离公式。
12.In calculus, the concept of a secant 割线 helps in understanding limits and derivatives.
在微积分中,secant 割线 的概念有助于理解极限和导数。
13.A secant 割线 is defined by two points on a curve.
secant 割线 是由曲线上的两个点定义的。
作文
In the realm of mathematics, particularly in trigonometry, the concept of a secant plays a crucial role. A secant is defined as a line that intersects a curve at two or more points. More specifically, in the context of a circle, the secant line cuts through the circle, creating two distinct intersection points. This geometric property is not just an abstract idea; it has practical applications in various fields such as physics, engineering, and computer graphics. Understanding the secant function is essential for students who aim to delve deeper into trigonometric principles. The secant function, denoted as sec(x), is the reciprocal of the cosine function. This means that if you have a right triangle, the secant of an angle is the ratio of the length of the hypotenuse to the length of the adjacent side. This relationship can help in solving complex problems involving angles and distances. One fascinating aspect of the secant function is its periodic nature. Like sine and cosine, the secant function exhibits periodic behavior, repeating its values in regular intervals. This periodicity is vital in graphing the function and understanding its behavior over different intervals. For instance, the secant function is undefined at certain angles where the cosine value is zero, leading to vertical asymptotes in its graph. These characteristics make the secant function an intriguing subject of study in trigonometry. Moreover, the secant function can be applied in real-world scenarios. Engineers often use the secant to calculate angles and distances when designing structures. For example, when constructing bridges, knowing the secant of specific angles helps engineers determine the necessary support and strength required to ensure safety and stability. Additionally, in computer graphics, the secant function aids in rendering curves and surfaces accurately, allowing for realistic visual representations in video games and simulations. As students progress in their mathematical journey, they may encounter more advanced concepts related to the secant. For instance, calculus introduces the idea of the derivative of the secant function, which can be derived using the quotient rule. Understanding how to differentiate the secant function is crucial for tackling higher-level mathematics, especially in applications involving rates of change and optimization problems. In conclusion, the secant is much more than just a mathematical term; it is a fundamental concept that bridges geometry, trigonometry, and practical applications. Its definition as a line intersecting a curve and its role as a reciprocal function highlight its significance in various mathematical contexts. As we explore the world of mathematics, embracing the secant and its properties will undoubtedly enhance our problem-solving skills and deepen our understanding of the intricate relationships between angles, lines, and curves. By mastering the secant, we open doors to new possibilities in both theoretical and applied mathematics.
在数学领域,特别是在三角学中,secant的概念起着至关重要的作用。secant被定义为一条与曲线在两个或多个点相交的线。更具体地说,在圆的上下文中,secant线穿过圆,形成两个不同的交点。这一几何属性不仅仅是一个抽象的概念;它在物理学、工程学和计算机图形学等多个领域都有实际应用。 理解secant函数对于希望深入研究三角原理的学生来说至关重要。secant函数,记作sec(x),是余弦函数的倒数。这意味着如果你有一个直角三角形,某个角的secant是斜边长度与邻边长度的比率。这种关系可以帮助解决涉及角度和距离的复杂问题。 secant函数的一个迷人之处在于其周期性特征。像正弦和余弦一样,secant函数表现出周期性行为,以规则的间隔重复其值。这种周期性对于绘制函数图像和理解其在不同区间内的行为至关重要。例如,在余弦值为零的某些角度处,secant函数是未定义的,这导致其图像中出现垂直渐近线。这些特性使得secant函数成为三角学研究中引人入胜的主题。 此外,secant函数可以应用于现实世界的场景。工程师经常使用secant来计算设计结构时的角度和距离。例如,在建造桥梁时,了解特定角度的secant有助于工程师确定确保安全和稳定所需的支撑和强度。此外,在计算机图形学中,secant函数帮助准确渲染曲线和表面,使视频游戏和模拟中的视觉表现更加真实。 随着学生在数学旅程中的进步,他们可能会遇到与secant相关的更高级的概念。例如,微积分引入了secant函数的导数这一概念,可以使用商法则进行推导。理解如何对secant函数求导对于解决高阶数学问题至关重要,尤其是在涉及变化率和优化问题的应用中。 总之,secant不仅仅是一个数学术语;它是一个基本概念,连接着几何学、三角学和实际应用。它作为一条与曲线相交的线的定义,以及作为一个倒数函数的角色,突显了它在各种数学背景下的重要性。当我们探索数学的世界时,拥抱secant及其属性无疑会增强我们的解决问题的能力,并加深我们对角度、线条和曲线之间复杂关系的理解。通过掌握secant,我们为理论和应用数学的新可能性打开了大门。
文章标题:secant的意思是什么
文章链接:https://www.liuxue886.cn/danci/473710.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论