semilog
简明释义
adj. (数)半对数的
英英释义
单词用法
创建一个半对数图 | |
使用半对数刻度分析数据 | |
在半对数图表上展示结果 | |
半对数纸 | |
半对数变换 | |
半对数回归 |
同义词
半对数的 | 半对数图 |
反义词
线性的 | The linear scale is often used for simple data representation. | 线性刻度通常用于简单的数据表示。 | |
对数的 | 对数刻度可以帮助可视化指数增长。 |
例句
1.The cumulative plastic strain energy increases with the increase of the loading frequency and stress level, which is linear with fatigue life on semilog coordinate.
累积塑性应变能随着加载频率及应力水平的增加而增加,与疲劳寿命在半对数坐标下呈线性关系。
2.The cumulative plastic strain energy increases with the increase of the loading frequency and stress level, which is linear with fatigue life on semilog coordinate.
累积塑性应变能随着加载频率及应力水平的增加而增加,与疲劳寿命在半对数坐标下呈线性关系。
3.There is a correlation between accumulated water production rate and accumulated oil production rate, which is a linear relation on semilog coordinate.
注水开发油田累计产水量和累计产油量存在一定的相关性,在半对数坐标上呈近似直线关系。
4.The semilog graph clearly shows the exponential growth of the bacteria over time.
该semilog图清楚地显示了细菌随时间的指数增长。
5.In our analysis, we used a semilog scale to better visualize the data range.
在我们的分析中,我们使用了semilog刻度以更好地可视化数据范围。
6.A semilog plot is particularly useful when dealing with data that spans several orders of magnitude.
当处理跨越几个数量级的数据时,semilog图特别有用。
7.We can apply a semilog transformation to our dataset to analyze the trends more effectively.
我们可以对数据集应用semilog变换,以更有效地分析趋势。
8.The semilog scale helped us identify the linear relationship in the logarithmic data.
该semilog刻度帮助我们识别了对数数据中的线性关系。
作文
In the field of mathematics and data visualization, the term semilog refers to a specific type of graph that uses a logarithmic scale on one axis and a linear scale on the other. This method of representation is particularly useful when dealing with data that spans several orders of magnitude, as it allows for a clearer interpretation of exponential growth or decay. For instance, in scientific research, the growth of bacteria can often be represented more effectively using a semilog scale, as the population can increase rapidly over time. In such cases, plotting the data on a standard linear scale might result in a graph that is difficult to read and interpret. The semilog graph effectively compresses the scale of the axis that represents the exponential values, making it easier to visualize trends that would otherwise be obscured. This method is not limited to biological data; it is also commonly used in economics, physics, and engineering. For example, in finance, the stock market often exhibits exponential growth patterns, which can be better understood through a semilog scale. Analysts use this technique to forecast future trends based on past performance, allowing for more informed investment decisions. One of the key advantages of using a semilog scale is that it can help to linearize data that follows an exponential trend. When data points are plotted on a semilog graph, a straight line indicates a constant percentage change, which simplifies the analysis significantly. This characteristic is particularly beneficial in fields such as pharmacokinetics, where drug concentration levels may decrease exponentially over time. By applying a semilog scale, researchers can easily identify the half-life of a drug, which is crucial for determining dosing schedules. However, it is essential to use semilog graphs judiciously. Misinterpretation can occur if the audience is not familiar with the logarithmic scale. For example, while a semilog graph can illustrate rapid growth, it may also downplay the actual values being represented. Therefore, it is vital to provide context and explanations when presenting data in this format. Clear labeling of axes and providing a legend can help mitigate confusion. Furthermore, the choice between a linear and a semilog scale should be based on the nature of the data being analyzed. If the data does not exhibit exponential characteristics, a linear scale may be more appropriate. In contrast, if the data spans multiple orders of magnitude, a semilog scale can reveal patterns that would otherwise remain hidden. In summary, the semilog graph is an invaluable tool in various scientific and analytical disciplines. Its ability to highlight exponential relationships makes it a preferred choice for visualizing data that covers a wide range of values. By understanding how to effectively utilize semilog scales, researchers and analysts can enhance their data presentation and interpretation skills, leading to more accurate conclusions and informed decision-making. As we continue to generate vast amounts of data across different fields, mastering the use of semilog graphs will undoubtedly become increasingly important.
在数学和数据可视化领域,术语semilog指的是一种特定类型的图表,该图在一个轴上使用对数刻度,而在另一个轴上使用线性刻度。这种表示方法在处理跨越多个数量级的数据时特别有用,因为它可以更清晰地解释指数增长或衰减。例如,在科学研究中,细菌的生长通常可以通过semilog刻度更有效地表示,因为人口可能会随着时间的推移迅速增加。在这种情况下,在标准线性刻度上绘制数据可能会导致图表难以阅读和解释。 semilog图有效地压缩了代表指数值的轴的刻度,使得可视化趋势变得更容易,这些趋势在其他情况下可能会被掩盖。这种方法不仅限于生物数据;它在经济学、物理学和工程学中也很常用。例如,在金融领域,股市通常表现出指数增长模式,这可以通过semilog刻度更好地理解。分析师利用这一技术,根据过去的表现预测未来趋势,从而做出更明智的投资决策。 使用semilog刻度的一个关键优势是它可以帮助线性化遵循指数趋势的数据。当数据点在semilog图上绘制时,直线表示恒定的百分比变化,这大大简化了分析。这一特性在药代动力学等领域尤其有益,其中药物浓度水平可能会随时间指数下降。通过应用semilog刻度,研究人员可以轻松识别药物的半衰期,这对于确定给药时间表至关重要。 然而,必须谨慎使用semilog图。如果观众不熟悉对数刻度,可能会发生误解。例如,虽然semilog图可以说明快速增长,但它也可能淡化所表示的实际值。因此,在以这种格式呈现数据时,提供背景和解释至关重要。清晰标记坐标轴和提供图例可以帮助减少混淆。 此外,选择线性刻度和semilog刻度应基于所分析数据的性质。如果数据没有表现出指数特征,则线性刻度可能更合适。相反,如果数据跨越多个数量级,semilog刻度可以揭示否则将保持隐藏的模式。 总之,semilog图在各种科学和分析学科中是一个无价的工具。它突显指数关系的能力使其成为可视化覆盖广泛值的数据的首选。通过理解如何有效利用semilog刻度,研究人员和分析师可以提高他们的数据呈现和解释能力,从而得出更准确的结论并做出明智的决策。随着我们在不同领域继续生成大量数据,掌握semilog图的使用无疑将变得越来越重要。
文章标题:semilog的意思是什么
文章链接:https://www.liuxue886.cn/danci/474142.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论