semimetallic
简明释义
英[ˌsemɪməˈtælɪk]美[semɪmeˈtəlɪk]
半金属的
英英释义
单词用法
半金属化合物 | |
半金属元素 | |
半金属性质 | |
半金属相 | |
表现出半金属特征 | |
转变为半金属状态 |
同义词
类金属 | 硅是电子产品中广泛使用的类金属。 | ||
半导体 | Gallium arsenide is a common semiconductor material used in high-speed devices. | 砷化镓是一种常见的半导体材料,广泛应用于高速设备。 |
反义词
金属的 | 金属元素是良好的电导体。 | ||
非金属的 | 非金属材料常用于绝缘。 |
例句
1.Selenium: Semimetallic chemical element, chemical symbol Se, atomic number 34.
硒:半金属化学元素,化学符号se,原子序数34。
2.Selenium: Semimetallic chemical element, chemical symbol Se, atomic number 34.
硒:半金属化学元素,化学符号se,原子序数34。
3.Boron: Semimetallic chemical element, chemical symbol b, atomic number 5.
硼:半金属的化学元素,化学符号B,原子序数5。
4.The material used in this electronic device is a semimetallic 半金属的 compound that enhances conductivity.
这个电子设备中使用的材料是一种半金属的化合物,可以增强导电性。
5.Graphene exhibits semimetallic 半金属的 properties, making it useful in various applications.
石墨烯表现出半金属的特性,使其在各种应用中非常有用。
6.In the study of materials, semimetallic 半金属的 phases can lead to interesting quantum effects.
在材料研究中,半金属的相位可能导致有趣的量子效应。
7.The semimetallic 半金属的 nature of bismuth makes it a candidate for thermoelectric applications.
铋的半金属的特性使其成为热电应用的候选材料。
8.Research shows that certain alloys can exhibit semimetallic 半金属的 behavior under specific conditions.
研究表明,某些合金在特定条件下可以表现出半金属的行为。
作文
Semimetallic materials occupy a unique position in the periodic table, bridging the gap between metals and non-metals. They exhibit properties that are characteristic of both categories, which makes them particularly interesting for various applications in science and technology. The term semimetallic (半金属的) refers to elements that have some metallic characteristics, such as electrical conductivity, while also displaying non-metallic traits like brittleness. This dual nature allows semimetallic substances to be utilized in a wide array of fields, including electronics, optics, and materials science. One of the most well-known examples of a semimetallic element is arsenic. Arsenic has a crystalline structure that allows it to conduct electricity under certain conditions, making it useful in semiconductor technology. Semiconductors are essential components in modern electronic devices, such as smartphones and computers. The ability of semimetallic materials to conduct electricity while also being able to insulate under different circumstances makes them ideal for these applications. Moreover, the doping process, which involves adding impurities to a semiconductor to change its electrical properties, often utilizes semimetallic elements to enhance performance. Another important aspect of semimetallic materials is their optical properties. Many semimetallic compounds can absorb and emit light at specific wavelengths, which is crucial for developing advanced optical devices. For instance, materials like antimony and tellurium are recognized for their unique light-absorbing capabilities, making them suitable for photovoltaic cells and photodetectors. The combination of electrical and optical functionalities in semimetallic materials opens up new avenues for research and innovation in renewable energy technologies. In addition to electronics and optics, semimetallic materials play a significant role in catalysis. Catalysts are substances that speed up chemical reactions without undergoing permanent changes themselves. Certain semimetallic compounds have shown promise as effective catalysts in various chemical processes, including organic synthesis and environmental remediation. Their ability to facilitate reactions while remaining stable under different conditions highlights the versatility of semimetallic materials in addressing complex challenges in chemistry and industry. The study of semimetallic materials extends beyond their practical applications; it also contributes to our understanding of fundamental scientific principles. Researchers are continually exploring the electronic band structures of semimetallic compounds to gain insights into how their unique properties arise. This knowledge not only enhances our comprehension of material science but also paves the way for the development of novel materials with tailored properties for specific applications. In conclusion, semimetallic materials represent a fascinating intersection of metal and non-metal characteristics. Their unique properties enable a wide range of applications in electronics, optics, and catalysis, making them invaluable in modern technology and scientific research. As we continue to explore the potential of semimetallic materials, we can expect to uncover even more innovative uses that will shape the future of various industries.
半金属材料在元素周期表中占据独特的位置,弥补了金属与非金属之间的差距。它们展现出金属和非金属的特征,使其在科学和技术的各种应用中尤为有趣。术语semimetallic(半金属的)指的是一些具有部分金属性质的元素,如电导率,同时也显示出脆性等非金属性质。这种双重性质使得semimetallic物质能够在多个领域中得到应用,包括电子学、光学和材料科学。 最著名的semimetallic元素之一是砷。砷具有晶体结构,在某些条件下可以导电,这使其在半导体技术中非常有用。半导体是现代电子设备的重要组成部分,如智能手机和计算机。semimetallic材料在不同情况下既能导电又能绝缘的能力使其成为这些应用的理想选择。此外,掺杂过程涉及向半导体中添加杂质以改变其电气特性,通常利用semimetallic元素来提高性能。 semimetallic材料的另一个重要方面是它们的光学特性。许多semimetallic化合物能够在特定波长下吸收和发射光,这对于开发先进的光学设备至关重要。例如,锑和碲等材料因其独特的光吸收能力而被认可,使其适合用于光伏电池和光探测器。semimetallic材料在电气和光学功能上的结合为可再生能源技术中的研究和创新开辟了新途径。 除了电子学和光学,semimetallic材料在催化中也发挥着重要作用。催化剂是加速化学反应的物质,而自身则不会发生永久性变化。某些semimetallic化合物在各种化学过程中表现出作为有效催化剂的潜力,包括有机合成和环境修复。它们在不同条件下促进反应的能力,同时保持稳定,突显了semimetallic材料在解决化学和工业复杂挑战中的多样性。 对semimetallic材料的研究不仅限于其实际应用;它还为我们理解基本科学原理做出了贡献。研究人员不断探索semimetallic化合物的电子带结构,以深入了解其独特性质的产生。这一知识不仅增强了我们对材料科学的理解,也为开发针对特定应用的新型材料铺平了道路。 总之,semimetallic材料代表了金属与非金属特征的迷人交集。它们独特的性质使其在电子学、光学和催化等广泛应用中不可或缺,成为现代技术和科学研究中极具价值的材料。随着我们继续探索semimetallic材料的潜力,我们可以期待发现更多创新的用途,这将塑造各个行业的未来。
文章标题:semimetallic的意思是什么
文章链接:https://www.liuxue886.cn/danci/474144.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论