sequences
简明释义
英[ˈsiː.kwənsɪz]美[ˈsiː.kwənsɪz]
n. [数][计]序列,顺序;继起的事(sequence 的复数形式)
英英释义
单词用法
依次,逐一 | |
时间顺序 |
同义词
系列 | 一系列事件 | ||
顺序 | 以特定顺序 | ||
进展 | 数学上的进展 | ||
链 | 一连串反应 | ||
连续 | 彼此连续 |
反义词
混乱 | 这些文件完全处于混乱状态。 | ||
混沌 | 这种情况的混沌让人很难清晰思考。 | ||
随机性 | 结果显示出高度的随机性。 |
例句
1.We have very consistent character repeating sequences.
有非常一致的字符重复序列。
2.Although the remarkable antiquity of Australia's rock art is now established, the sequences and meanings of its images have been widely debated.
虽然澳大利亚的岩石艺术非凡的古迹现在已经得到承认,它图像的顺序和意义一直被广泛地讨论。
3.Biologists can infer how species are related evolutionarily by comparing DNA sequences for the same genes in different species.
生物学家可以通过比较不同物种中相同基因的DNA序列来推断物种之间的进化关系。
4.In this correspondence, a new class of sextic residue sequences is constructed.
在这种对应关系中,构建了一类新的六性残基序列。
5.Some sequences have multiple expressions.
某些序列有多个表达式。
6.More stages mean more possible sequences.
更多的人生阶段意味着更多可能的继起事件。
7.Trigraph sequences are replaced by corresponding single-character internal representations.
三字符序列被替换成相应的内部表示单个字符。
8.Threads are simply sequences of instructions.
线程是指令序列。
9.The DNA sequences in each organism are unique.
每个生物体中的DNA 序列都是独特的。
10.In programming, we often deal with sequences of numbers.
在编程中,我们经常处理数字的 序列。
11.The teacher asked us to analyze the sequences in the poem.
老师让我们分析诗中的 序列。
12.Mathematicians study sequences to understand patterns.
数学家研究 序列 以理解模式。
13.The sequences of events led to a surprising conclusion.
事件的 序列 导致了一个令人惊讶的结论。
作文
In the study of mathematics and computer science, the concept of sequences (序列) plays a crucial role in understanding patterns and relationships. A sequence (序列) is defined as an ordered list of numbers or elements, where each element is called a term. The importance of sequences (序列) can be seen in various fields, including statistics, programming, and even biology. One of the most common types of sequences (序列) is the arithmetic sequence, which is generated by adding a constant difference to each term. For example, in the sequence 2, 4, 6, 8, the common difference is 2. This simple yet powerful concept allows mathematicians to solve complex problems by identifying patterns within sequences (序列). Similarly, geometric sequences (序列), where each term is multiplied by a constant factor, are equally significant. An example of a geometric sequence (序列) would be 3, 6, 12, 24, where each term is multiplied by 2. In computer science, sequences (序列) are vital for algorithms and data structures. For instance, sorting algorithms often manipulate sequences (序列) to arrange data in a specific order. Understanding how sequences (序列) work allows programmers to write more efficient code and optimize performance. Additionally, in programming languages, arrays and lists are examples of data structures that inherently rely on sequences (序列) to store and manage collections of data. Biologically, sequences (序列) can refer to the arrangement of nucleotides in DNA, which determines genetic information. The study of these biological sequences (序列) has led to groundbreaking advancements in genetics and medicine. By analyzing DNA sequences (序列), scientists can identify genetic disorders, understand evolutionary relationships, and even develop personalized medicine approaches based on an individual’s unique genetic makeup. Moreover, in literature and storytelling, the concept of sequences (序列) is essential for constructing narratives. Writers often use sequences of events to build tension, develop characters, and create engaging plots. The arrangement of scenes in a story can significantly impact the reader's experience, making the understanding of sequences (序列) crucial for effective storytelling. In conclusion, the term sequences (序列) encompasses a wide range of meanings across different disciplines. Whether in mathematics, computer science, biology, or literature, recognizing and understanding sequences (序列) enables individuals to grasp complex concepts and apply them effectively. As we continue to explore various fields of study, the significance of sequences (序列) remains a fundamental aspect of our understanding of the world around us. By mastering the concept of sequences (序列), we can unlock new possibilities and insights in our academic and professional pursuits.
在数学和计算机科学的研究中,sequences(序列)这一概念在理解模式和关系方面发挥着至关重要的作用。Sequence(序列)被定义为一个有序的数字或元素列表,其中每个元素称为项。sequences(序列)的重要性可以在多个领域中看到,包括统计学、编程甚至生物学。 最常见的sequences(序列)类型之一是算术序列,它通过将一个常数差加到每一项来生成。例如,在序列2、4、6、8中,公差为2。这一简单而强大的概念使数学家能够通过识别sequences(序列)中的模式来解决复杂问题。同样,几何sequences(序列),其中每一项都乘以一个常数因子,也同样重要。几何sequence(序列)的一个例子是3、6、12、24,其中每一项都乘以2。 在计算机科学中,sequences(序列)对于算法和数据结构至关重要。例如,排序算法通常操纵sequences(序列)以特定顺序排列数据。理解sequences(序列)的工作原理使程序员能够编写更高效的代码并优化性能。此外,在编程语言中,数组和列表是固有依赖于sequences(序列)来存储和管理数据集合的数据结构的例子。 在生物学上,sequences(序列)可以指DNA中核苷酸的排列,这决定了遗传信息。这些生物sequences(序列)的研究已经导致基因组学和医学方面的突破性进展。通过分析DNAsequences(序列),科学家可以识别遗传疾病,理解进化关系,甚至根据个体独特的基因组成开发个性化医学方法。 此外,在文学和讲故事中,sequences(序列)这一概念对于构建叙事至关重要。作家通常使用事件的sequences(序列)来建立紧张感、发展角色并创造引人入胜的情节。故事中场景的安排可以显著影响读者的体验,因此理解sequences(序列)对有效讲故事至关重要。 总之,术语sequences(序列)在不同学科中涵盖了广泛的含义。无论是在数学、计算机科学、生物学还是文学中,识别和理解sequences(序列)使人们能够掌握复杂的概念并有效地应用它们。随着我们继续探索各个研究领域,sequences(序列)的重要性仍然是我们理解周围世界的基本方面。通过掌握sequences(序列)的概念,我们可以在学术和专业追求中解锁新的可能性和洞察力。
文章标题:sequences的意思是什么
文章链接:https://www.liuxue886.cn/danci/474347.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论