serotyping
简明释义
英[ˈsɛrəʊtaɪpɪŋ]美[ˈsɛroʊtaɪpɪŋ]
n. 血清型;[免疫]血清学分型
v. 按血清型分类;决定……的血清型(serotype 的 ing 形式)
英英释义
单词用法
血清分型技术 | |
血清分型分析 | |
血清分型结果 | |
进行血清分型 | |
血清分型测试 | |
血清分型鉴定 |
同义词
反义词
血清阴性 | 患者对该细菌表现出血清阴性。 | ||
未指定分型 | In some cases, unspecified typing can lead to difficulties in treatment. | 在某些情况下,未指定分型可能会导致治疗上的困难。 |
例句
1.There was close antigen relationship between Vibrio fluvialis and Vibrio furnissii, serotyping of V. fluvialis could be made with the diagnostic-serum of V. furnissii.
部分河弧菌与弗尼斯弧菌存在着密切的抗原关系,故也可用弗尼斯弧菌的诊断血清对河弧菌作出定型。
2.There was close antigen relationship between Vibrio fluvialis and Vibrio furnissii, serotyping of V. fluvialis could be made with the diagnostic-serum of V. furnissii.
部分河弧菌与弗尼斯弧菌存在着密切的抗原关系,故也可用弗尼斯弧菌的诊断血清对河弧菌作出定型。
3.The laboratory is conducting serotyping 血清分型 to identify the specific strain of bacteria causing the outbreak.
实验室正在进行serotyping 血清分型,以识别导致疫情的具体细菌株。
4.In vaccine development, serotyping 血清分型 helps determine which strains are most prevalent in the population.
在疫苗开发中,serotyping 血清分型有助于确定在群体中最流行的菌株。
5.Researchers used serotyping 血清分型 to investigate the diversity of viral strains in the region.
研究人员使用serotyping 血清分型来调查该地区病毒株的多样性。
6.The results of serotyping 血清分型 were crucial for understanding the epidemiology of the disease.
serotyping 血清分型的结果对于理解疾病的流行病学至关重要。
7.Health officials rely on serotyping 血清分型 data to track the spread of infectious diseases.
卫生官员依赖于serotyping 血清分型数据来追踪传染病的传播。
作文
Serotyping is a crucial technique in microbiology that helps scientists identify and classify microorganisms based on their surface antigens. This method is particularly significant in the study of bacteria and viruses, where different strains can have varying pathogenic potentials. By employing serotyping, researchers can determine the specific type of a microorganism, which is essential for diagnosis, treatment, and epidemiological studies. For instance, when an outbreak of a bacterial infection occurs, health officials can use serotyping to trace the source of the infection and understand how it spreads within the population. The process of serotyping typically involves the use of antibodies that specifically bind to the antigens present on the surface of the pathogen. These antibodies can be obtained from animals or produced in laboratories. Once the sample is prepared, it is mixed with the antibodies, and any reactions can indicate the presence of specific serotypes. This reaction can be observed through various methods, such as agglutination tests or enzyme-linked immunosorbent assays (ELISA). One of the most well-known applications of serotyping is in the identification of the different serotypes of Streptococcus pneumoniae, a bacterium responsible for pneumonia and other serious infections. There are over 90 known serotypes of this bacterium, and understanding which serotype is causing an infection can greatly influence treatment decisions and vaccine development. Vaccines are often designed to target the most common or virulent serotypes, making serotyping an integral part of public health strategies. In addition to its role in infectious disease, serotyping has also been applied in food safety and environmental monitoring. For example, the identification of Salmonella serotypes in food products can help prevent foodborne illnesses and ensure consumer safety. By knowing which serotype is present, food safety authorities can take appropriate measures to address contamination and protect public health. Furthermore, serotyping is not limited to bacteria; it is also used in virology. For instance, different serotypes of the influenza virus can lead to seasonal outbreaks and pandemics. Understanding the circulating serotypes allows for better vaccine formulation and public health responses. The rapid evolution of viruses necessitates ongoing serotyping efforts to monitor changes in virulence and transmissibility. In conclusion, serotyping is a vital tool in the fields of microbiology and public health. Its ability to classify microorganisms based on their surface antigens aids in disease diagnosis, treatment, and prevention strategies. As new pathogens emerge and existing ones evolve, the importance of serotyping will only continue to grow. By investing in research and technology related to this technique, we can enhance our ability to respond to infectious diseases and protect global health.
分型是微生物学中一项重要的技术,帮助科学家根据微生物的表面抗原识别和分类微生物。这种方法在细菌和病毒的研究中尤为重要,因为不同的菌株可能具有不同的致病潜力。通过采用分型,研究人员可以确定微生物的特定类型,这对于诊断、治疗和流行病学研究至关重要。例如,当发生细菌感染的爆发时,卫生官员可以使用分型追踪感染源,并了解其在群体中的传播方式。 分型的过程通常涉及使用特异性结合病原体表面抗原的抗体。这些抗体可以从动物中获得或在实验室中生产。一旦样本准备好,就会将其与抗体混合,任何反应都可以指示特定血清型的存在。可以通过多种方法观察这种反应,例如凝集试验或酶联免疫吸附测定(ELISA)。 分型最著名的应用之一是在识别引起肺炎和其他严重感染的细菌肺炎链球菌的不同血清型方面。已知这种细菌有90多种血清型,了解哪种血清型导致感染可以极大地影响治疗决策和疫苗开发。疫苗通常旨在针对最常见或致病性强的血清型,因此分型成为公共卫生策略中不可或缺的一部分。 除了在传染病中的作用外,分型还应用于食品安全和环境监测。例如,识别食品产品中沙门氏菌血清型可以帮助预防食源性疾病并确保消费者安全。通过了解存在的血清型,食品安全当局可以采取适当措施解决污染问题,保护公共健康。 此外,分型不仅限于细菌;它也用于病毒学。例如,流感病毒的不同血清型可能导致季节性暴发和大流行。了解流行的血清型有助于更好地制定疫苗配方和公共卫生响应。病毒的快速进化需要持续的分型工作,以监测致病性和传播能力的变化。 总之,分型是微生物学和公共卫生领域的重要工具。它根据微生物的表面抗原进行分类的能力有助于疾病的诊断、治疗和预防策略。随着新病原体的出现和现有病原体的演变,分型的重要性只会继续增长。通过对与这一技术相关的研究和技术进行投资,我们可以增强应对传染病的能力,保护全球健康。
文章标题:serotyping的意思是什么
文章链接:https://www.liuxue886.cn/danci/474447.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论