trinary
简明释义
adj. 三倍的;三重的
英英释义
与三个部分或元素相关或由其组成。 | |
Involving a system or representation based on the number three. | 涉及基于数字三的系统或表示法。 |
单词用法
三值逻辑 | |
三进制数系统 | |
三元关系 | |
三元表示 |
同义词
三元的 | 三元系统 | ||
三重的 | 三重关系 |
反义词
二元的 | 二进制系统在计算机科学中被广泛使用。 | ||
一元的 | 一元操作只涉及一个操作数。 |
例句
1.Given the requirements of logical programming, a trinary-tree knowledge representation is proposed in this paper, and a framework of inference procedures based on the representation is given.
本文根据逻辑程序的要求,设计了知识结构的三叉树表示法,并给出了基于这种表示的推理过程的框架。
2.Given the requirements of logical programming, a trinary-tree knowledge representation is proposed in this paper, and a framework of inference procedures based on the representation is given.
本文根据逻辑程序的要求,设计了知识结构的三叉树表示法,并给出了基于这种表示的推理过程的框架。
3.By using Taylor's formula, the article deduces the sufficient condition of the existent extreme value and the necessary condition of the inexistent extreme value of trinary function.
通过利用泰勒公式推导出判断三元函数极值存在的充分条件和极值不存在的必要条件。
4.The structure of unary and binary polynomials over a lattice is determined in this paper. Moreover, some remarks on trinary polynomials are offered.
本文确定了任意格上一元多项式和二元多项式的结构,并给出了三元多项式的几个结果。
5.There are 10 kinds of people in the world, those that understand trinary, those that don't, and those that confuse it with binary.
这个世界上有10种人,其中有些是能理解三进制的,有些不懂,有些则把它和二进制弄混淆了。
6.This experiment indicated the solution-combusting method could be used to prepared trinary and complicated oxide.
实验表明这种简单的方法可以用于制备三元甚至多元氧化物。
7.The ammunition security is greatly improved when 1% micro-powder graphite is added into the trinary formulation.
在三元配方中加入1%微粉石墨,可大大提高药剂的安全性。
8.Trinary tree has been applied widely to modern management and information system.
三叉树已广泛应用在现代管理信息系统中。
9.Finally, the formula has also been extended to trinary alloys.
对于三元合金也作了相应的推广。
10.Avoid using the trinary conditional operator.
避免使用?:条件算符。
11.In a trinary (三元) system, there are three distinct states of operation.
在一个trinary (三元) 系统中,有三个不同的操作状态。
12.The trinary (三元) logic allows for more complex decision-making processes.
这种trinary (三元) 逻辑允许更复杂的决策过程。
13.Our new software uses a trinary (三元) model to analyze data more effectively.
我们的新软件使用trinary (三元) 模型来更有效地分析数据。
14.The trinary (三元) encoding scheme can represent more information than binary.
这种trinary (三元) 编码方案可以表示比二进制更多的信息。
15.In computer science, a trinary (三元) tree can have three children per node.
在计算机科学中,trinary (三元) 树每个节点可以有三个子节点。
作文
In the realm of computer science and mathematics, the concept of a number system is foundational to understanding how data is processed and represented. The most common system that we encounter is the binary system, which uses two digits: 0 and 1. However, there exists another fascinating system known as the trinary (三元) system, which utilizes three digits: 0, 1, and 2. This trinary (三元) system opens up new possibilities for data representation and manipulation, making it an intriguing area of study for researchers and enthusiasts alike. The trinary (三元) system can be particularly useful in various applications, including digital computing and telecommunications. For instance, in certain types of quantum computing, the principles of trinary (三元) logic can lead to more efficient algorithms and processes. The ability to represent more information with fewer digits allows for a higher density of data storage and faster processing speeds, which are critical in our increasingly data-driven world. Moreover, the trinary (三元) system has unique mathematical properties that distinguish it from binary systems. In a trinary (三元) system, each digit represents a power of three, which can lead to interesting patterns and relationships in numerical calculations. For example, the number 10 in decimal translates to 101 in trinary (三元), showcasing how different bases can alter the representation of numbers. In addition to its mathematical significance, the trinary (三元) system also finds relevance in theoretical frameworks and models. In game theory, for instance, strategies can sometimes be represented using trinary (三元) options, allowing for a richer set of outcomes compared to binary choices. This can enhance decision-making processes in complex scenarios where multiple factors must be considered. Despite its advantages, the trinary (三元) system is not as widely adopted as binary due to various practical challenges. The majority of existing hardware and software infrastructures are built around binary systems, making a transition to trinary (三元) systems complex and costly. Additionally, the human brain is accustomed to thinking in binary terms, which can make the adoption of trinary (三元) logic less intuitive for many people. Nonetheless, the exploration of trinary (三元) systems continues to inspire innovation in technology and mathematics. As we advance into the future, the potential for trinary (三元) computing may become more prominent, especially as researchers seek to develop new methods for processing and analyzing vast amounts of data. The integration of trinary (三元) logic into artificial intelligence and machine learning could lead to breakthroughs that enhance our understanding of complex systems and improve decision-making algorithms. In conclusion, while the trinary (三元) system may not currently be as prevalent as its binary counterpart, its unique properties and potential applications make it a significant topic of interest. As we continue to explore the boundaries of computation and data representation, the trinary (三元) system may very well play a crucial role in shaping the future of technology and mathematics. Understanding this system not only enriches our knowledge but also prepares us for the innovations that lie ahead.
在计算机科学和数学领域,数字系统的概念是理解数据如何被处理和表示的基础。我们最常遇到的系统是二进制系统,它使用两个数字:0和1。然而,还存在一个引人入胜的系统,称为trinary(三元)系统,它使用三个数字:0、1和2。这个trinary(三元)系统为数据表示和操作开辟了新的可能性,使其成为研究人员和爱好者都感兴趣的领域。 trinary(三元)系统在各种应用中尤其有用,包括数字计算和电信。例如,在某些类型的量子计算中,trinary(三元)逻辑的原理可以导致更高效的算法和过程。用更少的数字表示更多的信息使得数据存储密度更高,处理速度更快,这在我们日益以数据驱动的世界中至关重要。 此外,trinary(三元)系统具有独特的数学属性,使其与二进制系统区分开来。在trinary(三元)系统中,每个数字代表三的幂,这可能导致数值计算中出现有趣的模式和关系。例如,十进制中的数字10在trinary(三元)中转换为101,展示了不同基数如何改变数字的表示。 除了数学意义外,trinary(三元)系统在理论框架和模型中也有相关性。例如,在博弈论中,策略有时可以使用trinary(三元)选项表示,从而允许比二进制选择更丰富的结果。这可以增强复杂场景中必须考虑多个因素的决策过程。 尽管有其优势,由于各种实际挑战,trinary(三元)系统并没有像二进制那样广泛采用。现有的大多数硬件和软件基础设施都是围绕二进制系统构建的,因此转向trinary(三元)系统既复杂又昂贵。此外,人类大脑习惯于以二进制思考,这使得许多人采用trinary(三元)逻辑不太直观。 尽管如此,对trinary(三元)系统的探索仍然激励着技术和数学的创新。随着我们进入未来,trinary(三元)计算的潜力可能变得更加突出,特别是在研究人员寻求开发处理和分析大量数据的新方法时。将trinary(三元)逻辑整合到人工智能和机器学习中可能会导致突破,增强我们对复杂系统的理解,并改善决策算法。 总之,尽管trinary(三元)系统目前可能不如其二进制对手普遍,但其独特的属性和潜在应用使其成为一个重要的研究主题。随着我们不断探索计算和数据表示的边界,trinary(三元)系统可能在塑造未来技术和数学方面发挥关键作用。理解这一系统不仅丰富了我们的知识,还为我们准备了未来的创新。
文章标题:trinary的意思是什么
文章链接:https://www.liuxue886.cn/danci/484078.html
本站文章均为原创,未经授权请勿用于任何商业用途
发表评论